【題目】一條河流經(jīng)過(guò)、兩個(gè)港口,水流的速度是4千米/時(shí).甲、乙兩船同時(shí)出發(fā),由港口順流駛向港口,甲船的靜水速度快于乙船的靜水速度.兩船分別到達(dá)港口后立即返回港口.兩船與港口的距離(千米)與出發(fā)時(shí)間(時(shí))之間的函數(shù)圖像如圖所示.

1兩港口相距 千米.乙船在靜水中的速度為 千米/時(shí).

2)求甲船從港口返回港口時(shí)之間的函數(shù)關(guān)系式.

3)求兩船在途中相遇時(shí),相遇處于港口之間的距離.

【答案】196,20;(2;(312千米

【解析】

(1)根據(jù)圖象即可得出A、B兩港口相距96千米;根據(jù)乙船由A港口順流駛向B港口用了4小時(shí)列出方程即可求得乙船在靜水中的速度;

(2)根據(jù)甲船向A港口順流駛向B港口時(shí)3小時(shí)可得出甲船逆水速度,進(jìn)而得出甲船從B港口返回A港口時(shí)yx之間的函數(shù)關(guān)系式;

(3)根據(jù)(2)的結(jié)論以及乙船由A港口順流駛向B港口時(shí)yx之間的函數(shù)關(guān)系式列方程即可解答.

解:(1)由圖象可知,A、B兩港口相距96千米,

設(shè)乙船在靜水中的速度為x千米/時(shí)

4×(x+4=96,

解得x=20,

即乙船在靜水中的速度為20千米/時(shí),

(2)甲船在順?biāo)乃俣葹椋?/span>(千米/時(shí)),

∴甲船逆水速度為:32-8=24(千米/時(shí)),

即甲船從B港口返回A港口時(shí)yx之間的函數(shù)關(guān)系式為:

(3)根據(jù)題意得:

解得,

兩船在途中相遇時(shí),相遇處于港口相距12千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax23ax+c的圖象與x軸交于點(diǎn)AB,與y軸交于點(diǎn)C直線y=﹣x+4經(jīng)過(guò)點(diǎn)BC

1)求拋物線的表達(dá)式;

2)過(guò)點(diǎn)A的直線交拋物線于點(diǎn)M,交直線BC于點(diǎn)N

點(diǎn)N位于x軸上方時(shí),是否存在這樣的點(diǎn)M,使得AMNM53?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

連接AC,當(dāng)直線AM與直線BC的夾角∠ANB等于∠ACB2倍時(shí),請(qǐng)求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)B,與y軸交于點(diǎn)A,直線AB與反比例函數(shù)ym0)在第一象限的圖象交于點(diǎn)C、點(diǎn)D,其中點(diǎn)C的坐標(biāo)為(1,8),點(diǎn)D的坐標(biāo)為(4,n).

1)分別求mn的值;

2)連接OD,求△ADO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y(k≠0x0)的圖象經(jīng)過(guò)頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE3DE,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,四邊形 ABCD 是正方形,點(diǎn) GBC 上的任意一點(diǎn),BF AG 于點(diǎn) F,DE AG于點(diǎn) E,探究 BFDE,EF 之間的數(shù)量關(guān)系.第一學(xué)習(xí)小組合作探究后,得到DEBF= EF,請(qǐng)證明這個(gè)結(jié)論;

(2)若(1)中的點(diǎn) GCB 的延長(zhǎng)線上,其余條件不變,請(qǐng)?jiān)趫D②中畫出圖形,并直接寫出此時(shí) BF,DE,EF 之間的數(shù)量關(guān)系;

(3)如圖 ③ ,四邊形 ABCD 內(nèi)接于 ⊙O,AB=AD,E ,FAC 上的兩點(diǎn),且滿足∠AED=∠BFA=∠BCD.試判斷 AC,DE,BF 之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)OE是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)AD不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BE,DF.下列說(shuō)法:

對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.

所有正確說(shuō)法的序號(hào)是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將從1開始的連續(xù)自然數(shù)按圖規(guī)律排列:

1

2

3

4

1

1

2

3

4

2

8

7

6

5

3

9

10

11

12

4

16

15

14

13

規(guī)定位于第行,第列的自然數(shù)10記為,自然數(shù)15記為按此規(guī)律,自然數(shù)2018記為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,點(diǎn)分別是邊上的兩點(diǎn),且分別交.下列結(jié)論:①;②平分;③;④.其中正確的結(jié)論是( )

A.②③④B.①④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)C是線段AB上一點(diǎn),ACAB,BC為⊙O的直徑.

1)在圖1直徑BC上方的圓弧上找一點(diǎn)P,使得PAPB;(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

2)連接PA,求證:PA是⊙O的切線;

3)在(1)的條件下,連接PC、PB,∠PAB的平分線分別交PC、PB于點(diǎn)D、E.求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案