【題目】如圖,有長(zhǎng)為22米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為14米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃,有以下兩種圍法.
(1)如圖1,設(shè)花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達(dá)式,并確定x的取值范圍;
(2)如圖2,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料造了寬為1米的兩個(gè)小門,設(shè)花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達(dá)式及S的最大值?
【答案】(1)y=﹣3x2+22x(≤x<);(2)S=﹣3a2+24a(≤a<8),當(dāng)a=4時(shí),S最大值為48.
【解析】
(1)設(shè)花圃的寬AB為x米,由矩形面積y=長(zhǎng)×寬,列出函數(shù)解析式;
(2)由在BC上用其他材料造了寬為1米的兩個(gè)小門,故長(zhǎng)變?yōu)?/span>22﹣3a+2,再列出函數(shù)解析式.
(1)設(shè)花圃的寬AB為x米,面積為y米2,y=ABBC=x(22﹣3x)
=﹣3x2+22x.
根據(jù)題意可得:,解得:≤x<,即x的取值范圍:≤x<;
(2)設(shè)花圃的寬AB為a米,面積為S米2,由題意可得:S=a(22﹣3a+2)
=﹣3a2+24a=﹣3(a﹣4)2+48.
根據(jù)題意可得:,解得:≤a<8,即x的取值范圍:≤a<8,當(dāng)a=4時(shí),S最大值為48.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為12的正方形ABCD沿其對(duì)角線AC剪開(kāi),再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個(gè)三角形重疊部分的面積為32時(shí),它移動(dòng)的距離AA′等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一種原料,運(yùn)往A地和B地銷售.如表記錄的是該產(chǎn)品運(yùn)往A地和B地供應(yīng)量y1(kg)、y2(kg)與銷售價(jià)格x(元)之間的關(guān)系:
銷售價(jià)格x(元) | 100 | 150 | 200 | 300 |
運(yùn)往A地y1(kg) | 300 | 250 | 200 | 100 |
運(yùn)往B地y2(kg) | 450 | 350 | 250 | n |
(1)請(qǐng)認(rèn)真分析上表中所給數(shù)據(jù),用你所學(xué)過(guò)的函數(shù)來(lái)表示其變化規(guī)律,并驗(yàn)證你的猜想,分別求出y1與x、y2與x的函數(shù)關(guān)系式;
(2)用你求出的函數(shù)關(guān)系式完成上表,直接寫出n= ;
(3)直接寫出銷售價(jià)格在 元時(shí),該產(chǎn)品運(yùn)往A地的供應(yīng)量等于運(yùn)往B地的供應(yīng)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直線l上擺放著三個(gè)三角形:△ABC、△HFG、△DCE,已知BC=CE,F(xiàn)、G分別是BC、CE的中點(diǎn),FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.設(shè)圖中三個(gè)四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S1=_____,S2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線:,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,長(zhǎng)為半徑畫弧交軸負(fù)半軸于點(diǎn);再過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,長(zhǎng)為半徑畫弧交軸負(fù)半軸于點(diǎn);…,按此作法進(jìn)行下去.點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)一個(gè)凸多邊形除一個(gè)內(nèi)角外,其余各角之和為2750°,這個(gè)多邊形的邊數(shù)為__________,除去的這個(gè)內(nèi)角的度數(shù)為__________.
(2)一個(gè)多邊形截去一個(gè)角后,形成另一個(gè)多邊形的內(nèi)角和是1620°,則原來(lái)多邊形的邊數(shù)是____.
(3)一個(gè)凸多邊形的某一個(gè)內(nèi)角的外角與其余內(nèi)角的和恰為500°,那么這個(gè)多邊形的邊數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點(diǎn),且AB=CD,下列結(jié)論:①EG⊥FH;②四邊形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以點(diǎn)為頂點(diǎn)作等腰,等腰,其中,如圖1所示放置,使得一直角邊重合,連接、.
(1)試判斷、的數(shù)量關(guān)系,并說(shuō)明理由;
(2)延長(zhǎng)交于點(diǎn)試求的度數(shù);
(3)把兩個(gè)等腰直角三角形按如圖2放置,(1)、(2)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△BAD≌△EBC,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,點(diǎn)M為DE的中點(diǎn),過(guò)點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)如圖1,當(dāng)A,B,E三點(diǎn)在同一直線上時(shí),判斷AC與CN數(shù)量關(guān)系為________;
(2)將圖1中△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)到圖2位置時(shí),(1)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說(shuō)明理由;
(3)將圖1中△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一周,旋轉(zhuǎn)過(guò)程中△CAN能否為等腰直角三角形?若能,直接寫出旋轉(zhuǎn)角度;若不能,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com