已知:如圖,一次函數(shù)的圖象經(jīng)過第一、二、三象限,且與反比例函數(shù)的圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.OB=
10
,tan∠DOB=
1
3

(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)A的橫坐標(biāo)為m,求m的取值范圍.
(1)過點(diǎn)B作BH⊥x軸于點(diǎn)H,
在Rt△OHB中,HO=3BH,
由勾股定理,得BH2+HO2=OB2,
又∵OB=
10

∴BH2+(3BH)2=(
10
2,
∵BH>0,
∴BH=1,HO=3,
∴點(diǎn)B(-3,-1),
設(shè)反比例函數(shù)的解析式為y=
k1
x
(k≠0),
∵點(diǎn)B在反比例函數(shù)的圖象上,代入得:k1=3,
∴反比例函數(shù)的解析式為y=
3
x

答:反比例函數(shù)的解析式為y=
3
x


(2)設(shè)直線AB的解析式為y=k2x+b(k≠0).  
由點(diǎn)A在第一象限,得m>0,
又由點(diǎn)A在函數(shù)y=
3
x
的圖象上,可求得點(diǎn)A的縱坐標(biāo)為
3
m
,
∵點(diǎn)B(-3,-1),點(diǎn)A(m,
3
m
),
-3k2+b=-1
mk2+b=
3
m

解關(guān)于k2、b的方程組,得
k2=
1
m
b=
3-m
m
,
∴直線AB的解析式為 y=
1
m
x+
3-m
m

由已知,直線經(jīng)過第一、二、三象限,
∴b>0時(shí),即 
3-m
m
>0
,
∵m>0,
∴3-m>0,
由此得 0<m<3.
答:m的取值范圍是0<m<3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=x+b與雙曲線y=
k
x
在第一象限內(nèi)交于A點(diǎn),交x軸于B點(diǎn)(B在O點(diǎn)左邊).AC⊥x軸于C,且點(diǎn)C的坐標(biāo)是(b,0).若△ABC的面積為8,求直線與雙曲線的另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=
k
x
(x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6).
(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在反比例函數(shù)y=
k
x
(k>0)上,點(diǎn)C在x軸的正半軸上且坐標(biāo)為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;

(2)點(diǎn)B為橫坐標(biāo)為1的反比例函數(shù)圖象上的一點(diǎn),BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點(diǎn)落在點(diǎn)A′處,A′B與y軸交于點(diǎn)F,求OF的長;

(3)直線y=-x+3交x軸于M點(diǎn),交y軸于N點(diǎn),點(diǎn)P是雙曲線y=
k
x
(k>0)上的一動(dòng)點(diǎn),PQ⊥x軸于Q點(diǎn),PR⊥y軸于R點(diǎn),PQ,PR與直線MN交于H,G兩點(diǎn).給出下列兩個(gè)結(jié)論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你選擇并證明求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負(fù)半軸于E,雙曲線y=
k
x
(x>0)
的圖象經(jīng)過點(diǎn)A,若△BEC的面積為6,則k等于( 。
A.3B.6C.12D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸相切于B,與y軸交于C(0,1),D(0,4)兩點(diǎn),函數(shù)y=
k
x
的圖象過點(diǎn)A,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)A(-3,4)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,連接AB,反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P是該反比例函數(shù)圖象上任意一點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,點(diǎn)Q是線段AB上任意一點(diǎn),連接OQ、CQ.
(1)求k的值;
(2)判斷△QOC與△POD的面積是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,點(diǎn)A和點(diǎn)C都在雙曲線y=
k
x
(k>0)上,則點(diǎn)D的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,正方形ABCD的邊BC在x軸上,點(diǎn)E是對(duì)角線AC,BD的交點(diǎn),函數(shù)y=
3
x
的圖象經(jīng)過A,E兩點(diǎn),則△OAE的面積為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案