【題目】如圖,四邊形是矩形,點在坐標軸上, 繞點順時針旋轉得到的,點軸上,直線軸于點,交于點,線段,

1)求直線的解析式;

2)求的面積;

3)點軸上,平面內是否存在點,使以點、、為頂點的四邊形是矩形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

【答案】1;(2 ;(3

【解析】

1)可求得、的坐標,利用待定系數(shù)法可求得直線的解析式;

2)可求得點坐標,求出直線的解析式,聯(lián)立直線、解析式可求得點的橫坐標,可求得的面積;

3)當為直角三角形時,可找到滿足條件的點,分、三種情況,分別求得點的坐標,可分別求得矩形對角線的交點坐標,再利用中點坐標公式可求得點坐標.

解:(1,,

繞點順時針旋轉得到的,

,,

設直線解析式為,

、坐標代入可得

解得,

直線的解析式為;

2)由(1)可知

設直線解析式為

把點坐標代入可求得,

直線解析式為,

,解得,

點到軸的距離為,

又由(1)可得,

;

3以點、、、為頂點的四邊形是矩形,

為直角三角形,

①當時,則只能在軸上,連接于點,如圖1,

該情況不符合題意.

②當時,則只能在軸上,連接于點,如圖2,

則有,

,即,解得,

,且,

,則,

,

點坐標為,則,

解得,,此時;

③當時,則可知點為點,如圖,

四邊形為矩形,

,,

可求得

綜上可知存在滿足條件的點,其坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】.如圖 1,ABCD,直線 EF AB 于點 E,交 CD 于點 F,點 G CD 上,點 P在直線 EF 左側,且在直線 AB CD 之間,連接 PEPG.

(1) 求證: EPG=AEPPGC;

(2) 連接 EG,若 EG 平分∠PEF,AEP+ PGE=110°,PGC=EFC,求∠AEP 的度數(shù).

(3) 如圖 2,若 EF 平分∠PEBPGC 的平分線所在的直線與 EF 相交于點 H,則∠EPG 與∠EHG之間的數(shù)量關系為      .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校準備購進一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.

(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價各是多少元;

(2)學校準備購進這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,問A型節(jié)能燈最多可以買多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)﹣2a3b(4a2b)÷6a4b2

2

3

4(2a1)(a4)(a+3)(a4)

5(x3y+4)(x+3y4)

6(a+2b)(a2b)(a24b2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線AB分別交x軸、y軸于點a、b滿足

______;______

P在直線AB的右側,且

若點Px軸上,則點P的坐標為______;

為直角三角形,求點P的坐標;

如圖2,在的條件下,且點P在第四象限,APy軸交于點M,BPx軸交于點N,連接求證:提示:過點Px軸于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為4,其面積標記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標記為S2 , …,按照此規(guī)律繼續(xù)下去,則S10的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.

(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,求證:∠DHO=∠DCO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在綜合與實踐課上老師將直尺擺放在三角板上,使直尺與三角板的邊分別交于點P、MN、Q

1)如圖所示.當∠CNG42°,求∠HMC 的度數(shù).(寫出證明過程)

2)將直尺向下平移至圖 2 位置,使直尺的邊緣通過點 C,交 AB 于點 P,直尺另一側與三角形交于 N、Q 兩點。請直接寫出∠PQF、∠A、∠ACE 之間的關系.

查看答案和解析>>

同步練習冊答案