(2004•南通)(1)在所給數(shù)軸上畫出表示數(shù)-3,-1,|-2|的點(diǎn);
(2)計(jì)算:

【答案】分析:(1)注意化簡數(shù),如|-2|=2,再進(jìn)一步表示;
(2)熟練根據(jù)二次根式的原運(yùn)算法則進(jìn)行.
解答:解:(1)-3<-1<|-2|;
(2)原式=2+1-2=1.

點(diǎn)評:此題主要考查了實(shí)數(shù)的運(yùn)算和利用數(shù)軸表示實(shí)數(shù),注意:數(shù)軸上右邊的總比左邊的數(shù)大;在化簡的時候,注意約分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2004•南通)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)P1位置時,直線L恰好經(jīng)過點(diǎn)B,此時直線的解析式是y=2x+1.
(1)求BC、AP1的長;
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時,則⊙P和⊙E的位置關(guān)系如何并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2004•南通)已知,二氧化碳的密度ρ(kg/m3)與體積V(m3)的函數(shù)關(guān)系式是ρ=
(1)求當(dāng)V=5m3時二氧化碳的密度ρ;
(2)請寫出二氧化碳的密度ρ隨V的增大(或減小)而變化的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2004•南通)如圖,彈簧總長y(cm)與所掛物體質(zhì)量x(kg)之間是一次函數(shù)關(guān)系,則該彈簧不掛物體時的長度為    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省南通市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•南通)已知,如圖,直角坐標(biāo)系內(nèi)的矩形ABCD,頂點(diǎn)A的坐標(biāo)為(0,3),BC=2AB,P為AD邊上一動點(diǎn)(與點(diǎn)A、D不重合),以點(diǎn)P為圓心作⊙P與對角線AC相切于點(diǎn)F,過P、F作直線L,交BC邊于點(diǎn)E,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)P1位置時,直線L恰好經(jīng)過點(diǎn)B,此時直線的解析式是y=2x+1.
(1)求BC、AP1的長;
(2)設(shè)AP=m,梯形PECD的面積為S,求S與m之間的函數(shù)關(guān)系式,寫出自變量m的取值范圍;
(3)以點(diǎn)E為圓心作⊙E與x軸相切.
①探究并猜想:⊙P和⊙E有哪幾種位置關(guān)系,并求出AP相應(yīng)的取值范圍;
②當(dāng)直線L把矩形ABCD分成兩部分的面積之比值為3:5時,則⊙P和⊙E的位置關(guān)系如何并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年貴州省貴陽市烏當(dāng)區(qū)第二中學(xué)中考題型試卷(解析版) 題型:解答題

(2004•南通)某生物興趣小組在四天的實(shí)驗(yàn)研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同,他們將一頭駱駝前兩晝夜的體溫變化情況繪制成下圖.請根據(jù)圖象回答:
(1)第一天中,在什么時間范圍內(nèi)這頭駱駝的體溫是上升的,它的體溫從最低上升到最高需要多少時間?
(2)第三天12時這頭駱駝的體溫是多少?
(3)興趣小組又在研究中發(fā)現(xiàn),圖中10時到22時的曲線是拋物線,求該拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案