【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)弦長(zhǎng)AB等于(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長(zhǎng)度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請(qǐng)寫出解答過程.

【答案】
(1)2
(2)解:連接OA,

∵OA=OB,OA=OD,

∴∠BAO=∠B,∠DAO=∠D,

∴∠DAB=∠BAO+∠DAO=∠B+∠D,

又∵∠B=30°,∠D=20°,

∴∠DAB=50°,

∴∠BOD=2∠DAB=100°


(3)解:∵∠BCO=∠A+∠D,

∴∠BCO>∠A,∠BCO>∠D,

∴要使△DAC與△BOC相似,只能∠DCA=∠BCO=90°,

此時(shí)∠BOC=60°,∠BOD=120°,

∴∠DAC=60°,

∴△DAC∽△BOC,

∵∠BCO=90°,

即OC⊥AB,

∴AC= AB=

∴當(dāng)AC的長(zhǎng)度為 時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似.


【解析】解:(1)過點(diǎn)O作OE⊥AB于E, 則AE=BE= AB,∠OEB=90°,
∵OB=2,∠B=30°,
∴BE=OBcos∠B=2× = ,
∴AB=2 ;
所以答案是:2 ;
【考點(diǎn)精析】本題主要考查了垂徑定理和圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某品牌太陽能熱水器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架CD所在直線相交于水箱橫斷面⊙O的圓心O,支架CD與水平面AE垂直,AB=150厘米,∠BAC=30°,另一根輔助支架DE=76厘米,∠CED=60°.
(1)求垂直支架CD的長(zhǎng)度;(結(jié)果保留根號(hào))
(2)求水箱半徑OD的長(zhǎng)度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù): ≈1.414, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)
(2)a(a﹣3)+(2﹣a)(2+a).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線與BC相交于點(diǎn)N.
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫理由:

如圖所示,

因?yàn)镈FAC(已知),

所以D+______=180°(__________________________)

因?yàn)?/span>C=D(已知),

所以C+_______=180°(_________________________)

所以DBEC(_________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較正五邊形與正六邊形,可以發(fā)現(xiàn)它們的相同點(diǎn)和不同點(diǎn).例如: 它們的一個(gè)相同點(diǎn):正五邊形的各邊相等,正六邊形的各邊也相等.
它們的一個(gè)不同點(diǎn):正五邊形不是中心對(duì)稱圖形,正六邊形是中心對(duì)稱圖形.
請(qǐng)你再寫出它們的兩個(gè)相同點(diǎn)和不同點(diǎn):
相同點(diǎn):
;

不同點(diǎn):
;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下面的問題:
(1)參加調(diào)查的學(xué)生共有人,在扇形圖中,表示“其他球類”的扇形的圓心角為度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 軸交于點(diǎn)A、B,與 軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤;
(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)

查看答案和解析>>

同步練習(xí)冊(cè)答案