【題目】P在等腰的斜邊所在直線上,若記:,則(

A.滿足條件的點P有且只有一個

B.滿足條件的點P有無數(shù)個

C.滿足條件的點P有有限個

D.對直線AB上的所有點P,都有

【答案】D

【解析】

分兩種情況討論:①當P在線段AB上,②當P在直線AB上(線段AB以外),過P點作出直角三角形利用勾股定理探討符合要求的點.

①當P在線段AB上時,如圖所示,過PPDAC于點C,作PEBC于點E,

RtABC是等腰直角三角形,∴∠A=B=45°,

RtADPRtPBE均為等腰直角三角形,∴AD=PD,PE=BE,

RtADP中,

RtPBE中,

RtPCD中,,

,即

②當P在直線AB上(線段AB以外)時,如圖所示,

同(1)可得,

綜上可知:P點在AB直線上任意位置時,都有,故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】O是△ABC外一點,OB、OC分別平分△ABC的外角∠CBE、∠BCF,若∠A50°,則∠BOC=_______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長均為1個單位的正方形網格圖中,建立了平面直角坐標系xOy,按要求解答下列問題:

(1)寫出△ABC三個頂點的坐標;

(2)畫出△ABC向右平移6個單位后得到的圖形△A1B1C1

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC 中,BAC=90°AB=AC=2,以 AC 為一邊.在ABC 外部作等腰直角三角形ACD ,則線段 BD 的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,己知ABC中,ACAB.試用直尺(不帶刻度)和圓規(guī)在圖中過點A作一條直線l,使點B關于直線l的對稱點在邊AC上(不要求寫作法,也不必說明理由,但要保留作圖痕跡);

2.如圖,方格紙中每個小正方形的邊長均為1,線段ABPQ的端點均在小正方形的頂點上.

①在線段PQ上確定一點C(點C在小正方形的頂點上).使ABC是軸對稱圖形,并在網格中畫出ABC

②請直接寫出ABC的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學活動課中,小輝將邊長為3的兩個正方形放置在直線l上,如圖1,他連結AD、CF,經測量發(fā)現(xiàn)AD=CF

1)他將正方形ODEFO點逆時針旋轉一定的角度,如圖2,試判斷ADCF還相等嗎?說明你的理由;

2)他將正方形ODEFO點逆時針旋轉,使點E旋轉至直線l上,如圖3,請你求出CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018年全國兩會于35日至20日在北京召開,為了了解市民獲取兩會新聞的最主要途徑,記者小李開展了一次抽樣調查,根據調查結果繪制了如圖所示尚不完整的統(tǒng)計圖.根據圖中信息解答下列問題:

(1)這次接受調查的市民總人數(shù)是   ;

(2)扇形統(tǒng)計圖中,電視所對應的圓心角的度數(shù)是   ;

(3)請補全條形統(tǒng)計圖;

(4)若該市約有700萬人,請你估計其中將電腦上網和手機上網作為獲取新聞的最主要途徑的總人數(shù).

查看答案和解析>>

同步練習冊答案