【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,
∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
【答案】(2)2+
【解析】試題分析:(1)先判定出△ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=∠CBE,然后利用“角邊角”證明△ADC和△BDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得證;
(2)根據(jù)全等三角形對應(yīng)邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.
(1)證明:∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,AD⊥BC
∴∠CAD+∠ACD=90°,
∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,,
∴△ADC≌△BDF(ASA),
∴BF=AC,
∵AB=BC,BE⊥AC,
∴AC=2AE,
∴BF=2AE;
(2)解:∵△ADC≌△BDF,
∴DF=CD=,
在Rt△CDF中,CF===2,
∵BE⊥AC,AE=EC,
∴AF=CF=2,
∴AD=AF+DF=2+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段AB=8cm,C是線段AB上一點(diǎn),AC=3.2cm,M是AB的中點(diǎn),N是AC的中點(diǎn).
(1)求線段CM的長;
(2)求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,動點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動;另一動點(diǎn)Q同時從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動,到達(dá)A點(diǎn)停止運(yùn)動.設(shè)P點(diǎn)運(yùn)動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“回”字形的道路寬為1米,整個“回”字形的長為8米,寬為1米,一個人從入口點(diǎn)A沿著道路中央走到中點(diǎn)B,他共走了( )
A. 55米 B. 55.5米 C. 56米 D. 56.5米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>9且x<26,單位:km)
(1)說出這輛出租車每次行駛的方向.
(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置.
(3)這輛出租車一共行駛了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,三角形ABC是等邊三角形,D是BC邊上的一點(diǎn),三角形ABD經(jīng)過旋轉(zhuǎn)后到達(dá)三角形ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果M是AB的中點(diǎn),那么經(jīng)過上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列結(jié)論錯誤的是( ).
A.AE∥BC B. ∠ADE=∠BDC
C.△BDE是等邊三角形 D. △ADE的周長是9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com