【題目】如圖1,在△ABC中,∠ACB為銳角,點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°
①當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖2,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為 .
②當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖3,①中的結(jié)論是否仍然成立,為什么?
(2)如圖4,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動.且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長的最大值.
【答案】
(1)CF⊥BD,CF=BD,解:成立,理由如下:∵∠FAD=∠BAC=90°,∴∠BAD=∠CAF在△BAD與△CAF中, .∴△BAD≌△CAF,∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD;
(2)解:如圖,過點(diǎn)A作AG⊥AC交CB的延長線于點(diǎn)G,
則∠GAC=90°,
∵∠ACB=45°,∠AGC=90°﹣∠ACB,
∴∠AGC=90°﹣45°=45°,
∴∠ACB=∠AGC=45°,
∴AC=AG,
在△GAD與△CAF中, ,
∴△GAD≌△CAF,
∴∠ACF=∠AGC=45°,
∠BCF=∠ACB+∠ACF=45°+45°=90°,
即CF⊥BC.
過點(diǎn)A作AQ⊥BC交CB的延長線于點(diǎn)Q,
∵DE與CF交于點(diǎn)P時(shí),此時(shí)點(diǎn)D位于線段CQ上,
∵∠BCA=45°,AC=4 ,
∴由勾股定理得AQ=CQ=4.
設(shè)CD=x,
∴DQ=4﹣x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在Rt△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴ ,
∴ .
∴CP=﹣ x2+x=﹣ (x﹣2)2+1.
∴當(dāng)x=2時(shí),CP有最大值1.
【解析】解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB與△FAC中, ,
∴△DAB≌△FAC,
∴CF=BD,∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD;
所以答案是:CF⊥BD,CF=BD;
【考點(diǎn)精析】關(guān)于本題考查的勾股定理的概念和正方形的性質(zhì),需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點(diǎn)B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點(diǎn)為D點(diǎn),求△ODB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該每件成本每件成本30元,從開業(yè)一段時(shí)間的每天銷售統(tǒng)計(jì)中,隨機(jī)抽取一部分情況如下表所示:
銷售單位(元) | 50 | 60 | 70 | 75 | 80 | 85 | … |
日銷售量 | 300 | 240 | 180 | 150 | 120 | 90 | … |
假設(shè)每天定的銷價(jià)是不變的,且每天銷售情況均服從這種規(guī)律.
(1)秋日銷售量與銷售價(jià)格之間滿足的函數(shù)關(guān)系式;
(2)門市部原設(shè)定兩名銷售員,擔(dān)當(dāng)銷售量較大時(shí),在每天售出量超過198件時(shí),則必須增派一名營業(yè)員才能保證營業(yè)有序進(jìn)行.設(shè)營業(yè)員每人每天工資為40元,求每件產(chǎn)品應(yīng)定價(jià)多少元,才能使每天門市部純利潤最大?(純利潤=總銷售﹣成本﹣營業(yè)員工資)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店銷售A、B兩種型號的新能源汽車,上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售出2輛A型車和1輛B型車,銷售額為62萬元
(1). 求每輛A型車和B型車的售價(jià)各為多少萬元?
(2). 甲公司擬向該店購買A、B兩種型號的新能源汽車共8輛,購車費(fèi)不少于165萬元,且不超過190萬元,則有哪幾種購車方案?幾種購車方案中所需購車費(fèi)最少是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為.第一次操作:分別延長,,至點(diǎn),,,使,,,順次連接,,,得到△.第二次操作:分別延長,,至點(diǎn),,,使,,,順次連接,,,得到△,…按此規(guī)律,要使得到的三角形的面積超過2020,最少經(jīng)過多少次操作( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若△ABC是邊長為2的正三角形,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系,
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)C的坐標(biāo)為______;
(2)將先向右平移2個(gè)單位長度,再向下平移3個(gè)單位長度,請畫出平移后的,并分別寫出點(diǎn)A1、B1、C1的坐標(biāo);
(3)求的面積.
0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,P是∠AOB平分線上的一點(diǎn),PD⊥OA,PE⊥OB,垂足分別為D,E.求證:
(1)OD=OE
(2)OP是DE的垂直平分線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com