【題目】點I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點D,若AI=2CD,點E為弦AC的中點,連接EI,IC,若IC=6,ID=5,則IE的長為_____.
【答案】4
【解析】
由已知條件可得到ID=BD=DC,可得I、B、C三點在以D點位圓心的圓上,過點D做DF⊥IC與點F,可得四邊形EIDF為平行四邊形,可得IE=DF,即可求出IE的長.
解:
如圖:I為△ABC的內(nèi)心,可得∠BAD=∠CAD,BD=CD,
又∠DIC=∠DAC+∠ACI,∠ICD=∠ICB+∠BCD
其中∠DAC=∠BAD=∠BCD,∠ACI=∠ICB,
∠DIC=∠ICD
ID=CD, ID=BD=DC=5, 可得AI=2CD=10
可得I、B、C三點在以D點位圓心的圓上,過點D做DF⊥IC與點F,
可得IF=FC(垂經(jīng)定理),
在RT△IFD中,,
又在△AIC中,AE=EC, IF=FC,
EF為△AIC的中位線,
EF∥AD,即EF∥ID, 且EF==5=ID,
四邊形EIDF為平行四邊形,可得IE=DF=4,
故答案:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(點A在點B的右側(cè)),與y軸交于點C.
(1)求直線BC的解析式;
(2)點F是直線BC下方拋物線上的一點,當(dāng)△BCF的面積最大時,在拋物線的對稱軸上找一點P,使得△BFP的周長最小,請求出點F的坐標(biāo)和點P的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點Q的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=﹣x+a(a>0)分別與x 軸、y 軸交于A、B 兩點,C、D 的坐標(biāo)分別為 C(0,b)、D(2a,b﹣a)(b>a).
(1)試判斷四邊形ABCD的形狀,并說明理由;
(2)若點C、D關(guān)于直線AB的對稱點分別為C′、D′.
①當(dāng)b=3時,試問:是否存在滿足條件的a,使得△BC′D′面積為?
②當(dāng)點C′恰好落在x軸上時,試求a 與b的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
sin(α+β)=sinαcosβ+cosαsinβ①
cos(α+β)=cosαcosβ﹣sinαsinβ②
tan(α+β)=③
利用這些公式可將某些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如:
tan105°=tan(45°+60°)==﹣(2+).
根據(jù)上面的知識,你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實際問題:
如圖,直升飛機在一建筑物CD上方A點處測得建筑物頂端D點的俯角α=60°,底端C點的俯角β=75°,此時直升飛機與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(2,﹣3),且與x軸交點坐標(biāo)為(﹣1,0),(3,0)
(1)求拋物線的解析式;
(2)在直線AB下方拋物線上找一點D,求出使得△ABD面積最大時點D的坐標(biāo);
(3)點M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達式為( )
A. y=﹣ B. y= C. y=﹣ D. y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com