【題目】如圖所示是某路燈燈架示意圖,其中點A表示電燈,AB和BC為燈架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于點C,求電燈A與地面l的距離.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G三點,且AB∥CD,OB=6cm,OC=8cm.
(Ⅰ)求證:OB⊥OC;
(Ⅱ)求CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中AB=AC,點D為BC邊的中點,點F是AB邊上一點,點E在線段DF的延長線上,∠BAE=∠BDF,點M在線段DF上,∠ABE=∠DBM.
1.如圖1,當∠ABC=45°時,求證:AE=MD;
2.如圖2,當∠ABC=60°時,則線段AE、MD之間的數(shù)量關(guān)系為: .
3.在(2)的條件下延長BM到P,使MP=BM,連接CP,若AB=7,AE=,求tan∠ACP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說明點D在⊙O上;
(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,CD為斜邊AB的中線.過點D作AB的垂線交AC于點E,再過A、D、E三點作⊙O.
(1)確定⊙O的圓心O的位置,并證明CD為⊙O的切線;
(2)若BC=3,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△EFG中,∠EFG=90°,EF=FG,且點E,F分別在矩形ABCD的邊AB,AD上.
(1)如圖1,當點G在CD上時,求證:△AEF≌△DFG;
(2)如圖2,若F是AD的中點,FG與CD相交于點N,連接EN,求證:EN=AE+DN;
(3)如圖3,若AE=AD,EG,FG分別交CD于點M,N,求證:MG2=MNMD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是由五個完全相同的小正方體組成的立體圖形,將圖①中的一個小正方體改變位置后如圖②.則三視圖發(fā)生改變的是( )
A.主視圖B.俯視圖
C.左視圖D.主視圖、俯視圖和左視圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學有一塊長為米,寬為米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路(陰影部分),余下的四塊矩形小場地建成草坪.
(1)請分別寫出每條道路的面積(用含或的代數(shù)式表示);
(2)若,并且四塊草坪的面積之和為144平方米,試求原來矩形場地的長與寬各為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對直線型斜拉索,造型新穎,是“三晉大地”的一種象征.某數(shù)學“綜合與實踐”小組的同學把“測量斜拉索頂端到橋面的距離”作為一項課題活動,他們制訂了測量方案,并利用課余時間借助該橋斜拉索完成了實地測量.測量結(jié)果如下表.
項目 | 內(nèi)容 | ||
課題 | 測量斜拉索頂端到橋面的距離 | ||
測量示意圖 | 說明:兩側(cè)最長斜拉索AC,BC相交于點C,分別與橋面交于A,B兩點,且點A,B,C在同一豎直平面內(nèi). | ||
測量數(shù)據(jù) | ∠A的度數(shù) | ∠B的度數(shù) | AB的長度 |
38° | 28° | 234米 | |
… | … |
(1)請幫助該小組根據(jù)上表中的測量數(shù)據(jù),求斜拉索頂端點C到AB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
(2)該小組要寫出一份完整的課題活動報告,除上表的項目外,你認為還需要補充哪些項目(寫出一個即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com