某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.
解:(1)設(shè)甲種材料每千克x元,乙種材料每千克y元,
依題意得:,
解得:;
答:甲種材料每千克25元,乙種材料每千克35元.
(2)設(shè)生產(chǎn)B產(chǎn)品a件,生產(chǎn)A產(chǎn)品(60﹣a)件.
依題意得:,
解得:38<a≤;
∵a的值為非負整數(shù),
∴a=39、40、41、42;
答:共有如下四種方案:
A(件) 21 20 19 18
B(件) 39 40 41 42
(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.理由如下:
設(shè)生產(chǎn)成本為W元,則W與a的關(guān)系式為:
W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,
即W是a的一次函數(shù),
∵k=55>0
∴W隨a增大而增大
∴當a=39時,總成本最低;
即生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.
科目:初中數(shù)學 來源: 題型:
黔東南州某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過20件,超出部分可以享受7折優(yōu)惠,若購進x(x>0)件甲種玩具需要花費y元,請你求出y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進哪種玩具省錢.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某水渠的橫截面呈拋物線形,現(xiàn)以AB所在直線為x軸.以拋物線的對稱軸為y軸建立如圖所示的平面直角坐標系.已知水面的寬AB=8米,且拋物線解析式為y=ax2﹣4.
(1)求a的值;
(2)點C(﹣1,m)是拋物線上一點,求點C關(guān)于原點O的對稱點D;
(3)寫出四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知反比例函數(shù)y=的圖象經(jīng)過點(3,2),那么下列四個點中,也在這個函數(shù)圖象上的是( )
A. (3,﹣2) B. (﹣2,﹣3) C. (1,﹣6) D. (﹣6,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的頂點為B(2,1),且過點A(0,2),直線y=x與拋物線交于點D,E(點E在對稱軸的右側(cè)),拋物線的對稱軸交直線y=x于點C,交x軸于點G,EF⊥x軸,垂足為F,點P在拋物線上,且位于對稱軸的右側(cè),PQ⊥x軸,垂足為點Q,△PCQ為等邊三角形
(1)求該拋物線的解析式;
(2)求點P的坐標;
(3)求證:CE=EF;
(4)連接PE,在x軸上點Q的右側(cè)是否存在一點M,使△CQM與△CPE全等?若存在,試求出點M的坐標;若不存在,請說明理由.[注:3+2=(+1)2].
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com