【題目】如圖,等腰直角三角形中,,,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,且 ,滿足.
(1)寫出、兩點(diǎn)坐標(biāo);
(2)求點(diǎn)坐標(biāo);
(3)如圖,,為上一點(diǎn),且,請(qǐng)寫出線段的數(shù)量關(guān)系,并說明理由.
【答案】(1)點(diǎn)A的坐標(biāo)為,點(diǎn)C的坐標(biāo)為;(2)點(diǎn)B的坐標(biāo)為(2,4);(3)MN= CN+AM,理由見解析
【解析】
(1)根據(jù)絕對(duì)值的非負(fù)性和平方的非負(fù)性即可求出a、b的值,從而求出、兩點(diǎn)坐標(biāo);
(2)過點(diǎn)A作AE∥y軸,過點(diǎn)B作BE⊥AE,作BD⊥x軸,設(shè)點(diǎn)B的坐標(biāo)為(x,y),分別用x、y表示出CD、BE、AE的長(zhǎng),然后利用AAS證出△EBA≌△DBC,可得BE=BD,AE=CD,列出方程即可求出點(diǎn)B的坐標(biāo);
(3)過點(diǎn)B作BF⊥BM,交AC的延長(zhǎng)線與點(diǎn)F,連接MF,利用SAS證出△ABM≌△CBF,從而得到AM=CF,BM=BF,∠AMB=∠CFB,根據(jù)等邊對(duì)等角可得∠BMF=∠BFM,然后證出∠FMN=∠MFN,再根據(jù)等角對(duì)等邊可得MN=NF,即可得出結(jié)論.
解:(1)∵
∴
∵
∴
解得:a=-2,b=2
∴點(diǎn)A的坐標(biāo)為,點(diǎn)C的坐標(biāo)為;
(2)過點(diǎn)A作AE∥y軸,過點(diǎn)B作BE⊥AE,作BD⊥x軸,如下圖所示
設(shè)點(diǎn)B的坐標(biāo)為(x,y)
∴BD=y,OD=x
∴CD=4-x,BE=x-(-2)=x+2,AE=y-2
∵BD⊥x軸
∴BD∥y軸
∴AE∥BD
∴∠DBE=180°-∠AEB=90°
∴∠EBA+∠ABD=90°
∵等腰直角三角形中,,
∴∠DBC+∠ABD=90°
∴∠EBA=∠DBC
在△EBA和△DBC中
∴△EBA≌△DBC
∴BE=BD,AE=CD
即x+2= y,y-2=4-x
解得:x=2,y=4
∴點(diǎn)B的坐標(biāo)為(2,4);
(3)MN= CN+AM,理由如下
過點(diǎn)B作BF⊥BM,交AC的延長(zhǎng)線與點(diǎn)F,連接MF
∴∠MBC+∠CBF=90°
∵△ABC為等腰三角形
∴BA=BC,∠BAC=∠BCA=45°,∠ABC=90°
∴∠MBC+∠ABM=90°,∠BCF=180°-∠BCA=135°,∠BAM=∠MAC+∠BAC=135°
∴∠ABM =∠CBF,∠BAM=∠BCF
在△ABM和△CBF中
∴△ABM≌△CBF
∴AM=CF,BM=BF,∠AMB=∠CFB
∴∠BMF=∠BFM,
∵
∴∠NMB=∠CFB
∴∠BMF-∠NMB=∠BFM-∠CFB
∴∠FMN=∠MFN
∴MN=NF
∵NF=CN+CF
∴MN=CN+AM
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點(diǎn)D,E是的中點(diǎn),AE與BC交于點(diǎn)F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長(zhǎng);
②求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=2,AC=,以BC為斜邊作等腰Rt△BCD,連接AD,則線段AD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(a,﹣)在直線y=﹣上,AB∥y軸,且點(diǎn)B的縱坐標(biāo)為1,雙曲線y=經(jīng)過點(diǎn)B.
(1)求a的值及雙曲線y=的解析式;
(2)經(jīng)過點(diǎn)B的直線與雙曲線y=的另一個(gè)交點(diǎn)為點(diǎn)C,且△ABC的面積為.
①求直線BC的解析式;
②過點(diǎn)B作BD∥x軸交直線y=﹣于點(diǎn)D,點(diǎn)P是直線BC上的一個(gè)動(dòng)點(diǎn).若將△BDP以它的一邊為對(duì)稱軸進(jìn)行翻折,翻折前后的兩個(gè)三角形所組成的四邊形為正方形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點(diǎn),點(diǎn)在上,連接,.
(1)如圖,若,,,求的度數(shù);
(2)若,,直接寫出 (用的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對(duì)稱等式”
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對(duì)稱等式”:
①52× = ×25
② ×396=693× ;
(2)設(shè)這類等式左邊兩位數(shù)的十位數(shù)字為a,個(gè)位數(shù)字為b,且2≤a+b≤9,寫出表示“數(shù)字對(duì)稱等式”一般規(guī)律的式子(含a,b),并證明;
(3)若(2)中a,b表示一個(gè)兩位數(shù),例如a=11,b=22,則1122×223311=113322×2211,請(qǐng)寫出表示這類“數(shù)字對(duì)稱等式”一般規(guī)律的式子(含a,b),并寫出a+b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對(duì)于平面內(nèi)的點(diǎn)P和兩條曲線、給出如下定義:若從點(diǎn)P任意引出一條射線分別與、交于、,總有是定值,我們稱曲線與“曲似”,定值為“曲似比”,點(diǎn)P為“曲心”.
例如:如圖2,以點(diǎn)為圓心,半徑分別為、都是常數(shù)的兩個(gè)同心圓、,從點(diǎn)任意引出一條射線分別與兩圓交于點(diǎn)M、N,因?yàn)榭傆?/span>是定值,所以同心圓與曲似,曲似比為,“曲心”為.
在平面直角坐標(biāo)系xOy中,直線與拋物線、分別交于點(diǎn)A、B,如圖3所示,試判斷兩拋物線是否曲似,并說明理由;
在的條件下,以O為圓心,OA為半徑作圓,過點(diǎn)B作x軸的垂線,垂足為C,是否存在k值,使與直線BC相切?若存在,求出k的值;若不存在,說明理由;
在、的條件下,若將“”改為“”,其他條件不變,當(dāng)存在與直線BC相切時(shí),直接寫出m的取值范圍及k與m之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=﹣2x+2交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線l2:y=x+1交x軸于點(diǎn)D,交y軸于點(diǎn)C,直線l1、l2交于點(diǎn)M.
(1)點(diǎn)M坐標(biāo)為_____;
(2)若點(diǎn)E在y軸上,且△BME是以BM為一腰的等腰三角形,則E點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點(diǎn)A(﹣2,2),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B'在此反比例函數(shù)的圖象上,則t的值是(。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com