如圖,△ABC中,P為AB上的一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能滿足△APC和△ACB相似的條件是( )
A.①②④ B.①③④ C.②③④ D.①②③
D【考點】相似三角形的判定.
【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對①②進(jìn)行判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對③④進(jìn)行判斷.
【解答】解:當(dāng)∠ACP=∠B,
∠A公共,
所以△APC∽△ACB;
當(dāng)∠APC=∠ACB,
∠A公共,
所以△APC∽△ACB;
當(dāng)AC2=AP•AB,
即AC:AB=AP:AC,
∠A公共,
所以△APC∽△ACB;
當(dāng)AB•CP=AP•CB,即=,
而∠PAC=∠CAB,
所以不能判斷△APC和△ACB相似.
故選D.
【點評】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F(xiàn)為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,是由一些棱長為單位1的相同的小正方體組合成的簡單幾何體.
(1)圖中有 塊小正方體;
(2)請在相應(yīng)方格紙中分別畫出幾何體的左視圖和俯視圖;
(3)如果在其表面涂漆,則要涂 平方單位.(幾何體放在地上,底面無法涂上漆)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在比例尺為1:10 000 000的中國地圖上,量得某地到北京的圖上距離為15cm,那么該地到北京的實際距離為( )
A.15000km B.1500km C.150km D.15km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD的邊長為6,點O是對角線AC、BD的交點,點E在CD上,且DE=2CE,過點C作CF⊥BE,垂足為F,連接OF,則OF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,如圖△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連接DH與BE相交于點G,某同學(xué)分析圖形后得出以下結(jié)論:①DH⊥BC;②CE=;③△AEB≌△CEB;④△BDF≌△CDA.上述結(jié)論一定正確的是( )
A.①③ B.③④ C.①③④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
探究:
(1)如圖①,∠1+∠2與∠B+∠C有什么關(guān)系?為什么?
(2)把圖①△ABC沿DE折疊,得到圖②,填空:∠1+∠2__________∠B+∠C(填“>”“<”“=”),當(dāng)∠A=40°時,∠B+∠C+∠1+∠2=__________;
(3)如圖③,是由圖①的△ABC沿DE折疊得到的,如果∠A=30°,則x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣__________=__________,猜想∠BDA+∠CEA與∠A的關(guān)系為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com