【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.
【答案】(1),;(2)P,.
【解析】
試題(1)由點A在一次函數(shù)圖象上,結合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;
(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.
試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,
得:a=-1+4,解得:a=3,
∴點A的坐標為(1,3).
把點A(1,3)代入反比例函數(shù)y=,
得:3=k,
∴反比例函數(shù)的表達式y=,
聯(lián)立兩個函數(shù)關系式成方程組得:,
解得:,或,
∴點B的坐標為(3,1).
(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.
∵點B、D關于x軸對稱,點B的坐標為(3,1),
∴點D的坐標為(3,- 1).
設直線AD的解析式為y=mx+n,
把A,D兩點代入得:,
解得:,
∴直線AD的解析式為y=-2x+5.
令y=-2x+5中y=0,則-2x+5=0,
解得:x=,
∴點P的坐標為(,0).
S△PAB=S△ABD-S△PBD=BD(xB-xA)-BD(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:拋物線交x軸于A,C兩點,交y軸于點B,且OB=2CO.
(1)求二次函數(shù)解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、N作x軸的垂線交x軸于點G、H兩點,當四邊形MNHG為矩形時,求該矩形周長的最大值;
(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以每件50元的價格購進800件恤,第一個月以單價80元銷售,售出了200件.第二個月如果單價不變,預計仍可售出200件,該商店為增加銷售量決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多銷售出10件,但最低單價應不低于50元,第二個月結束后,該商店對剩余的T恤一次性清倉,清倉時單價為40元.設第二個月單價降低元,
(1)填表(用含的代數(shù)式完成表格中的①②③處)
時間 | 第一個月 | 第二個月 | 清倉 |
單價(元) | 80 | _______ | 40 |
銷售量(件) | 200 | _______ | _______ |
(2)如果該商店希望通過銷售這800件恤獲利9000元,那么第二個月單價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的布袋中,裝有紅、黃、白三種只有顏色不同的小球,其中紅色小球有6個,黃、白色小球的數(shù)量相同,為估計袋中黃色小球的數(shù)量,每次將袋中小球攪勻后摸出一個小球記下顏色放回,再攪勻多次試驗發(fā)現(xiàn)摸到紅色的頻率是,則估計黃色小球的個數(shù)是( 。
A.21B.40C.42D.48
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面內(nèi),給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于a(a為常數(shù)),到點O的距離等于a的所有點組成圖形G,的平分線交圖形G于點D,連接AD,CD.
(1)求證:AD=CD;
(2)過點D作DEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.若AD=CM,求直線DE與圖形G的公共點個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n的頂點相同”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《西安市生活垃圾分類管理辦法》由西安市人民政府第86次常務會議審議通過,于2019年9月l日起施行.為了解同學們對“垃圾分類知識”的了解情況,張紅武在九年級隨機抽取了若干名同學進行了問卷調(diào)查,將調(diào)查結果分為以下四個等級,:非常了解、:比較了解、:知道的很少、:完全不了解.并將調(diào)查結果繪制成如下兩個不完整的統(tǒng)計圖.
(1)補全下面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取同學問卷結果的中位數(shù)落在哪個等級___________(填字母);
(3)若九年級有1300名同學,年級部準備對調(diào)查結果為“知道的很少”和“完全不了解”的兩部分同學進行“垃圾分類”知識的普及和培訓,請你估算九年級有多少人需要進行“垃圾分類”知識的普及和培訓.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減。虎a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m>2; ⑤3a+c<0.其中正確結論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com