【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)A(m,2),將直線y=2x向下平移后與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)P,且△POA的面積為2.
(1)求k的值.
(2)求平移后的直線的函數(shù)解析式.
【答案】
(1)解:∵點(diǎn)A(m,2)在直線y=2x,
∴2=2m,
∴m=1,
∴點(diǎn)A(1,2),
∵點(diǎn)A(1,2)在反比例函數(shù)y= 上,
∴k=2
(2)解:方法一、如圖,
設(shè)平移后的直線與y軸相交于B,過(guò)點(diǎn)P作PM⊥OA,BN⊥OA,AC⊥y軸
由(1)知,A(1,2),
∴OA= ,sin∠BON=sin∠AOC= = ,
∵S△POA= OA×PM= × PM=2,
∴PM= ,
∵PM⊥OA,BN⊥OA,
∴PM∥BN,
∵PB∥OA,
∴四邊形BPMN是平行四邊形,
∴BN=PM= ,
∵sin∠BON= = = ,
∴OB=4,
∵PB∥AO,
∴B(0,﹣4),
∴平移后的直線PB的函數(shù)解析式y(tǒng)=2x﹣4,
方法二、如圖1,過(guò)點(diǎn)P作PC⊥y軸交OA于C,
設(shè)點(diǎn)P的坐標(biāo)為(n, )(n>1),
∴C( , ),∴PC=n﹣ ,
∵△POA的面積為2.A(1,2)
∴S△POA=S△PCO+S△PCA
= (n﹣ )× + (n﹣ )(2﹣ )
= (n﹣ )×2
=n﹣
=2,
∴n=1﹣ (舍)或n=1+ ,
∴P(1+ ,2 ﹣2)
∴PB∥AO,
∴設(shè)直線PB的解析式為y=2x+b,
∵點(diǎn)P在直線PB上,
∴2 ﹣2=2(1+ )+b,
∴b=﹣4,
∴平移后的直線PB的函數(shù)解析式y(tǒng)=2x﹣4,
【解析】(1)由點(diǎn)A的縱坐標(biāo)求得m,即點(diǎn)A的坐標(biāo),把點(diǎn)A的坐標(biāo)代入反比例函數(shù)中即可;(2)方法一、先求出PM,再求出BN然后用銳角三角函數(shù)求出OB,即可.方法二、先設(shè)出點(diǎn)P的坐標(biāo),利用△POA的面積為2.建立方程求出點(diǎn)P的坐標(biāo),即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖(1),PAB為⊙O的割線,直線PC與⊙O有公共點(diǎn)C,且PC2=PA×PB,
(1)求證:∠PCA=∠PBC;直線PC是⊙O的切線;
(2)如圖(2),作弦CD,使CD⊥AB,連接AD、BC,若AD=2,BC=6,求⊙O的半徑;
(3)如圖(3),若⊙O的半徑為 ,PO= ,MO=2,∠POM=90°,⊙O上是否存在一點(diǎn)Q,使得PQ+ QM有最小值?若存在,請(qǐng)求出這個(gè)最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一菱形OABC且∠A=120°,點(diǎn)O、B在y軸上,OA=1,現(xiàn)在把菱形向右無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,點(diǎn)B的落點(diǎn)依次為B1、B2、B3…,連續(xù)翻轉(zhuǎn)2017次,則B2017的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫(xiě)出表格中a,b,c的值;
(2)分別運(yùn)用表中的四個(gè)統(tǒng)計(jì)量,簡(jiǎn)要分析這兩名隊(duì)員的射擊訓(xùn)練成績(jī).若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為F,求證:△ADF∽△ABC;
(2)如圖2,
在(1)的條件下,若α=45°,求證:DE2=BD2+CE2;
(3)如圖3,
若α=45°,點(diǎn)E在BC的延長(zhǎng)線上,則等式DE2=BD2+CE2還能成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點(diǎn)P是OA上的一動(dòng)點(diǎn),點(diǎn)N(3,0)是OB上的一定點(diǎn),點(diǎn)M是ON的中點(diǎn),∠AOB=30°,要使PM+PN最小,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與y軸交于點(diǎn)C,其頂點(diǎn)記為M,自變量x=﹣1和x=5對(duì)應(yīng)的函數(shù)值相等.若點(diǎn)M在直線l:y=﹣12x+16上,點(diǎn)(3,﹣4)在拋物線上.
(1)求該拋物線的解析式;
(2)設(shè)y=ax2+bx+c對(duì)稱軸右側(cè)x軸上方的圖象上任一點(diǎn)為P,在x軸上有一點(diǎn)A(﹣ ,0),試比較銳角∠PCO與∠ACO的大。ú槐刈C明),并寫(xiě)出相應(yīng)的P點(diǎn)橫坐標(biāo)x的取值范圍.
(3)直線l與拋物線另一交點(diǎn)記為B,Q為線段BM上一動(dòng)點(diǎn)(點(diǎn)Q不與M重合),設(shè)Q點(diǎn)坐標(biāo)為(t,n),過(guò)Q作QH⊥x軸于點(diǎn)H,將以點(diǎn)Q,H,O,C為頂點(diǎn)的四邊形的面積S表示為t的函數(shù),標(biāo)出自變量t的取值范圍,并求出S可能取得的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com