【題目】解方程:
;
;
用配方法.
【答案】(1)(2) (3)
【解析】
(1)根據(jù)平方根的定義:一個(gè)數(shù)的平方等于a,這個(gè)數(shù)叫做a的平方根,根據(jù)4的平方根為±2,開(kāi)方后得到關(guān)于x的方程,求出方程的解即可得到x的值,即為原方程的解;
(2)先移項(xiàng),然后利用提取公因式法進(jìn)行因式分解;
(3)提取二次項(xiàng)系數(shù)3,然后根據(jù)完全平方公式配成平方的形式,再求解即可.
解:(1)(x-1)2=4,
開(kāi)方得:x-1=2或x-1=-2,
解得:x1=3,x2=-1;
(2)3(x-2)2=x(x-2),
移項(xiàng)得:3(x-2)2-x(x-2)=0,
分解因式得:(x-2)(3x-6-x)=0,
∴x-2=0,3x-6-x=0,
解得:x1=2,x2=3;
(3)3x2-6x+1=0
移項(xiàng)得,3x2-6x=-1,
配方得,3x2-6x+3=-1+3,
即3(x-1)2=2,
(x-1)2=,
開(kāi)方得,x-1=±,
x1=1+,x2=1-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,弦AB=弦CD,AB⊥CD于點(diǎn)E,且AE<EB,CE<ED,連結(jié)AO,DO,BD.
(1)求證:EB=ED.
(2)若AO=6,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為將我們的城市裝扮的更美麗,園林綠化工人要將公園一角的一塊四邊形的空地ABCD種植上花草.經(jīng)測(cè)量,∠B=90°,AB=3米,BC=4米,CD=12米,DA=13米.若每平方米空地需要購(gòu)買(mǎi)150元的花草.將這塊空地全部綠化需要購(gòu)買(mǎi)多少元的這種花草?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DP∥OC且DP=OC,連接CP.得到四邊形CODP.
(1)如圖(1),在ABCD中,若∠ABC=90°,判斷四邊形CODP的形狀,并證明;
(2)如圖(2),在ABCD中,若AB=AD,判斷四邊形CODP的形狀,并證明;
(3)如圖(3),在ABCD中,若∠ABC=90°,且AB=AD,判斷四邊形CODP的形狀,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于受到手機(jī)更新?lián)Q代的影響,某手機(jī)店經(jīng)銷的甲品牌手機(jī)四月份售價(jià)比三月份每臺(tái)降價(jià)500元.如果賣(mài)出相同數(shù)量的甲品牌手機(jī),那么三月份銷售額為9萬(wàn)元,四月份銷售額只有8萬(wàn)元.
(1)四月份甲品牌手機(jī)每臺(tái)售價(jià)為多少元?
(2)為了提高利潤(rùn),該店計(jì)劃五月份購(gòu)進(jìn)甲品牌及乙品牌手機(jī)銷售,已知甲每臺(tái)進(jìn)價(jià)為3500元,乙每臺(tái)進(jìn)價(jià)為4000元,預(yù)算用不多于7.6萬(wàn)元且不少于7.5萬(wàn)元的資金購(gòu)進(jìn)這兩種手機(jī)共20臺(tái),問(wèn)按此預(yù)算要求,可以有幾種進(jìn)貨方案,請(qǐng)寫(xiě)出所有進(jìn)貨方案?
(3)該店計(jì)劃五月在銷售甲品牌手機(jī)時(shí),在四月份售價(jià)基礎(chǔ)上每售出一臺(tái)甲品牌手機(jī)再返還顧客現(xiàn)金元,而乙品牌手機(jī)按銷售價(jià)4400元銷售,如要使(2)中所有方案獲利相同,應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AD平分∠CAE,AD∥BC.
(1)求證:△ABC是等腰三角形.
(2)當(dāng)∠CAE等于多少度時(shí)△ABC是等邊三角形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,菱形ABCD的邊長(zhǎng)為6,∠DAB=60°,點(diǎn)E是AB的中點(diǎn),連接AC、EC.點(diǎn)Q從點(diǎn)A出發(fā),沿折線A—D—C運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動(dòng),P、Q的速度均為每秒1個(gè)單位長(zhǎng)度;以PQ為邊在PQ的左側(cè)作等邊△PQF,△PQF與△AEC重疊部分的面積為S,當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)C時(shí)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)當(dāng)?shù)冗?/span>△PQF的邊PQ恰好經(jīng)過(guò)點(diǎn)D時(shí),求運(yùn)動(dòng)時(shí)間t的值;當(dāng)?shù)冗?/span>△PQF的邊QF恰好經(jīng)過(guò)點(diǎn)E時(shí),求運(yùn)動(dòng)時(shí)間t的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,請(qǐng)求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)如圖2,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),將等邊△PQF繞點(diǎn)P旋轉(zhuǎn)α ° (0<α<360°),直線PF 分別與直線AC、直線CD交于點(diǎn)M、N.是否存在這樣的α ,使△CMN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出此時(shí)線段CM的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形的邊長(zhǎng)和一條對(duì)角線的長(zhǎng)均為2 cm,則菱形的面積為( )
A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有____.(填序號(hào)即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com