【題目】如圖,半徑為5的⊙A中,弦BC、ED所對的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°.求點A到弦BC的距離.
【答案】3.
【解析】
試題分析:作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=3.
解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
∴=,
∴DE=BF=6,
∵AH⊥BC,
∴CH=BH,
∵CA=AF,
∴AH為△CBF的中位線,
∴AH=BF=3.
∴點A到弦BC的距離為:3.
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某農(nóng)場老板準備建造一個矩形羊圈ABCD,他打算讓矩形羊圈的一面完全靠著墻MN,墻MN可利用的長度為25m,另外三面用長度為50m的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分)
(1)若要使矩形羊圈的面積為300m2,則垂直于墻的一邊長AB為多少米?
(2)農(nóng)場老板又想將羊圈ABCD的面積重新建造成面積為320m2,從而可以養(yǎng)更多的羊,請聰明的你告訴他:他的這個想法能實現(xiàn)嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com