【題目】在△ABC中,AB=AC,點(diǎn)D在邊BC所在的直線上,過點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,DE∥AB交直線AC于點(diǎn)E.
(1)當(dāng)點(diǎn)D在邊BC上時(shí),如圖①,求證:DE+DF=AC.
(2)當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),如圖②;當(dāng)點(diǎn)D在邊BC的反向延長(zhǎng)線上時(shí),如圖③,請(qǐng)分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.
(3)若AC=6,DE=4,則DF= .
考點(diǎn):平行四邊形的判定與性質(zhì);全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).
【答案】(1)證明見解析(2)圖②中:AC+DE=DF.圖③中:AC+DF=DE(3)2或10
【解析】
試題分析:(1)證明四邊形AFDE是平行四邊形,且△DEC和△BDF是等腰三角形即可證得;
(2)與(1)的證明方法相同;
(3)根據(jù)(1)(2)中的結(jié)論直接求解.
解:(1)證明:∵DF∥AC,DE∥AB,
∴四邊形AFDE是平行四邊形.
∴AF=DE,
∵DF∥AC,
∴∠FDB=∠C
又∵AB=AC,
∴∠B=∠C,
∴∠FDB=∠B
∴DF=BF
∴DE+DF=AB=AC;
(2)圖②中:AC+DE=DF.
圖③中:AC+DF=DE.
(3)當(dāng)如圖①的情況,DF=AC﹣DE=6﹣4=2;
當(dāng)如圖②的情況,DF=AC+DE=6+4=10.
故答案是:2或10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)倡導(dǎo)的“一帶一路”建設(shè)將促進(jìn)我國(guó)與世界各國(guó)的互利合作,根據(jù)規(guī)劃,“一帶一路”地區(qū)覆蓋總?cè)丝诩s為4400000000人,這個(gè)數(shù)用科學(xué)記數(shù)法表示為( )
A.44×108 B.4.4×109 C.4.4×108 D.4.4×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A. 1cm , 2cm , 3cm B. 4cm 11cm 6cm
C. 5cm 5cm 10cm D. 6cm 7cm 8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,某超市從一樓到二樓有一自動(dòng)扶梯,圖②是側(cè)面示意圖.已知自動(dòng)扶梯AB的坡度為1∶2.4,AB的長(zhǎng)度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動(dòng)扶梯頂端B點(diǎn)正上方的一點(diǎn),BC⊥MN,在自動(dòng)扶梯底端A處測(cè)得C點(diǎn)的仰角為42°,則二樓的層高BC約為(精確到0.1米,sin42°≈0.67,tan42°≈0.90)( )
A. 10.8米 B. 8.9米 C. 8.0米 D. 5.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從A向D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點(diǎn)E,AB=9,BC=4,DC=3.
(1)求BE的長(zhǎng)度;
(2)求△ABE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=30°,AB ≠ BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若,∠AB ′D=75°,則BC =_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣,經(jīng)過A(﹣1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com