【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度沿B→A→C運(yùn)動(dòng)到點(diǎn)C停止.若△BPQ的面積為y運(yùn)動(dòng)時(shí)間為xs),則下列圖象中能大致反映yx之間關(guān)系的是( 。

A.B.C.D.

【答案】D

【解析】

AHBCH,根據(jù)等腰三角形的性質(zhì)得BH=CH,利用∠B=30°可計(jì)算出AH=AB=2,BH=AH=2,BC=2BH=4,利用速度公式可得點(diǎn)PB點(diǎn)運(yùn)動(dòng)到C4s,Q點(diǎn)運(yùn)動(dòng)到C8s,然后分類討論:當(dāng)0≤x≤2時(shí),作QDBCD,如圖1;當(dāng)2x≤4時(shí),作QDBCD,如圖2;于是可得0≤x≤2時(shí),函數(shù)圖象為拋物線的一部分,當(dāng)2x≤4時(shí),函數(shù)圖象為拋物線的一部分,即可得到答案.

解:如圖1,作AHBCH,

AB=AC=4cm

BH=CH

∠B=30°,

AH=AB=2,BH=AH=2

BC=2BH=4,

∵點(diǎn)P運(yùn)動(dòng)的速度為cm/sQ點(diǎn)運(yùn)動(dòng)的速度為2cm/s,

∴點(diǎn)PB點(diǎn)運(yùn)動(dòng)到C2s,Q點(diǎn)運(yùn)動(dòng)到C4s,

當(dāng)0≤x≤2時(shí),作QDBCD,如圖1,BQ=2x,BP=,

Rt△BPQ中,DQ=BQ=x,

y=xx=x2

當(dāng)2x≤4時(shí),作QDBCD,如圖2,CQ=4-2xBP=x,

Rt△BDQ中,DQ==4-2x),

y=4-2x=

綜上所述,y=

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5x軸交于點(diǎn)B,與y軸交于點(diǎn)D,拋物線y=﹣x2+bx+c與直線y=﹣x+5交于BD兩點(diǎn),點(diǎn)C是拋物線的頂點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)M是直線BD上方拋物線上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為m,過點(diǎn)Mx軸的垂線,交直線BD于點(diǎn)P,當(dāng)線段PM的長(zhǎng)度最大時(shí),求m的值及PM的最大值;

3)在拋物線上是否存在異于B、D的點(diǎn)Q,使BDQBD邊上的高為3,若存在求出點(diǎn)Q的坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 今年5月份,我市某中學(xué)開展?fàn)幾?/span>五好小公民征文比賽活動(dòng),賽后隨機(jī)抽取了部分參賽學(xué)生的成績(jī),按得分劃分為A,B,C,D四個(gè)等級(jí),并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

根據(jù)以上信息,解答以下問題:

1)表中的x=______;

2)扇形統(tǒng)計(jì)圖中m=______,n=______C等級(jí)對(duì)應(yīng)的扇形的圓心角為______度;

3)該校準(zhǔn)備從上述獲得A等級(jí)的四名學(xué)生中選取兩人做為學(xué)校五好小公民志愿者,已知這四人中有兩名男生(用a1,a2表示)和兩名女生(用b1b2表示),請(qǐng)用列表或畫樹狀圖的方法求恰好選取的是a1b1的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為.雙曲線的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE

1)求k的值及點(diǎn)E的坐標(biāo);

2)若點(diǎn)FOC邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極開展中學(xué)生社會(huì)實(shí)踐活動(dòng),決定成立文明宣傳、環(huán)境保護(hù)、交通監(jiān)督三個(gè)志愿者隊(duì)伍,每名學(xué)生最多選擇一個(gè)隊(duì)伍,為了了解學(xué)生的選擇意向,隨機(jī)抽取A,B,C,D四個(gè)班,共200名學(xué)生進(jìn)行調(diào)查.將調(diào)查得到的數(shù)據(jù)進(jìn)行整理,繪制成如下統(tǒng)計(jì)圖(不完整)

(1)求扇形統(tǒng)計(jì)圖中交通監(jiān)督所在扇形的圓心角度數(shù);

(2)求D班選擇環(huán)境保護(hù)的學(xué)生人數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;(溫馨提示:請(qǐng)畫在答題卷相對(duì)應(yīng)的圖上)

(3)若該校共有學(xué)生2500人,試估計(jì)該校選擇文明宣傳的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,點(diǎn)O是對(duì)角線AC的中點(diǎn),過點(diǎn)OAC的垂線,分別交AD、BC于點(diǎn)EF,連結(jié)AFCE

1)求證:△AOE≌△COF

2)試判斷四邊形AFCE的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西是我國(guó)釀酒最早的地區(qū)之一,山西釀酒業(yè)迄今為止已有余年的歷史.在漫長(zhǎng)的歷史進(jìn)程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價(jià)是元,經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)售價(jià)為元時(shí),每天可以售出瓶,售價(jià)每降低元,可多售出瓶(售價(jià)不高于元)

1)售價(jià)為多少時(shí)可以使每天的利潤(rùn)最大?最大利潤(rùn)是多少?

2)要使每天的利潤(rùn)不低于元,每瓶竹葉青酒的售價(jià)應(yīng)該控制在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).

圓材埋壁是我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問徑幾何?用現(xiàn)在的數(shù)學(xué)語言表達(dá)是:如圖,的直徑,弦,垂足為,寸,尺,其中1寸,求出直徑的長(zhǎng).

解題過程如下:

連接,設(shè)寸,則寸.

尺,∴寸.

中,,即,解得,

寸.

任務(wù):

1)上述解題過程運(yùn)用了 定理和 定理.

2)若原題改為已知寸,尺,請(qǐng)根據(jù)上述解題思路,求直徑的長(zhǎng).

3)若繼續(xù)往下鋸,當(dāng)鋸到時(shí),弦所對(duì)圓周角的度數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案