已知:等邊中,點(diǎn)O是邊AC,BC的垂直平分線的交點(diǎn),M,N分別在直線AC, BC上,且

1. 如圖1,當(dāng)CM=CN時(shí), M、N分別在邊AC、BC上時(shí),請(qǐng)寫(xiě)出AM、CN 、MN三者之間的數(shù)量關(guān)系;

2.  如圖2,當(dāng)CM≠CN時(shí),M、N分別在邊AC、BC上時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)你加以證明;若不成立,請(qǐng)說(shuō)明理由;

3.   如圖3,當(dāng)點(diǎn)M在邊AC上,點(diǎn)N在BC 的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出線段AM、CN、MN三者之間的數(shù)量關(guān)系.

 

 

1.

2.

   證明:過(guò)點(diǎn)O 作易得

             

   在邊AC上截得DN’=NE,連結(jié)ON’,

       ∵ DN’=NE,

          OD=OE,

          ∠ODN’=∠OEN

       

       ∴ON’=OE. ∠DON’=∠NOE.

        

         ∴∠MOD+∠NOE=600.

        ∴∠MOD+∠DON’=600.

       易證.

        ∴MN’=MN.

3.

解析:

1.由CM=CN得出△CMN是等邊三角形,它與△ABC的相似比是1:3,從而得出;

2.過(guò)點(diǎn)O 作在邊AC上截得DN’=NE,連結(jié)ON’,先證出得出ON’=OE.  ∠DON’=∠NOE.易證出,利用等量代換得出;

3.方程同上。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•延慶縣一模)如圖1,已知:已知:等邊△ABC,點(diǎn)D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合),求證:BD+DC>AD.
下面的證法供你參考:
把△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△ABE,連接ED,則有△ACD≌△ABE,DC=EB,∵AD=AE,∠DAE=60°,
∴△ADE是等邊三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD
實(shí)踐探索:
(1)請(qǐng)你仿照上面的思路,探索解決下面的問(wèn)題:
如圖3,點(diǎn)D是等腰直角三角形△ABC邊上的點(diǎn)(點(diǎn)D不與B、C重合).求證:BD+DC>
2
AD.
(2)如果點(diǎn)D運(yùn)動(dòng)到等腰直角三角形△ABC外或內(nèi)時(shí),BD、DC和AD之間又存在怎樣的數(shù)量關(guān)系?直接寫(xiě)出結(jié)論.
創(chuàng)新應(yīng)用:
(3)已知:如圖4,等腰△ABC中,AB=AC,且∠BAC=α(α為鈍角),D是等腰△ABC外一點(diǎn),且∠BDC+∠BAC=180°,BD、DC與AD之間存在怎樣的數(shù)量關(guān)系?寫(xiě)出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:等邊中,點(diǎn)O是邊AC,BC的垂直平分線的交點(diǎn),M,N分別在直線AC, BC上,且
【小題1】 如圖1,當(dāng)CM=CN時(shí), M、N分別在邊AC、BC上時(shí),請(qǐng)寫(xiě)出AM、CN 、MN三者之間的數(shù)量關(guān)系;
【小題2】 如圖2,當(dāng)CM≠CN時(shí),M、N分別在邊AC、BC上時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)你加以證明;若不成立,請(qǐng)說(shuō)明理由;
【小題3】  如圖3,當(dāng)點(diǎn)M在邊AC上,點(diǎn)N在BC 的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出線段AM、CN 、MN三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年北京市東城區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:等邊中,點(diǎn)O是邊AC,BC的垂直平分線的交點(diǎn),M,N分別在直線AC, BC上,且
【小題1】 如圖1,當(dāng)CM=CN時(shí), M、N分別在邊AC、BC上時(shí),請(qǐng)寫(xiě)出AM、CN 、MN三者之間的數(shù)量關(guān)系;
【小題2】 如圖2,當(dāng)CM≠CN時(shí),M、N分別在邊AC、BC上時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)你加以證明;若不成立,請(qǐng)說(shuō)明理由;
【小題3】  如圖3,當(dāng)點(diǎn)M在邊AC上,點(diǎn)N在BC 的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出線段AM、CN 、MN三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年北京市東城區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:解答題

已知:等邊中,點(diǎn)O是邊AC,BC的垂直平分線的交點(diǎn),M,N分別在直線AC, BC上,且

1. 如圖1,當(dāng)CM=CN時(shí), M、N分別在邊AC、BC上時(shí),請(qǐng)寫(xiě)出AM、CN 、MN三者之間的數(shù)量關(guān)系;

2.  如圖2,當(dāng)CM≠CN時(shí),M、N分別在邊AC、BC上時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)你加以證明;若不成立,請(qǐng)說(shuō)明理由;

3.   如圖3,當(dāng)點(diǎn)M在邊AC上,點(diǎn)N在BC 的延長(zhǎng)線上時(shí),請(qǐng)直接寫(xiě)出線段AM、CN 、MN三者之間的數(shù)量關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案