【題目】關(guān)于對(duì)位似圖形的4個(gè)表述中:
相似圖形一定是位似圖形,位似圖形一定是相似圖形;
位似圖形一定有位似中心;
如果兩個(gè)圖形是相似圖形,且每組對(duì)應(yīng)點(diǎn)的連線所在的直線都經(jīng)過同一個(gè)點(diǎn),那么,這兩個(gè)圖形是位似圖形;
位似圖形上任意兩點(diǎn)與位似中心的距離之比等于位似比.
正確的個(gè)數(shù)
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖有一座拋物線形拱橋,橋下面在正常水位是AB寬20m,水位上升3m就達(dá)到警戒線CD,這是水面寬度為10m。
(1)在如圖的坐標(biāo)系中求拋物線的解析式。
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到拱橋頂?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示A、B、C三點(diǎn)在格點(diǎn)上.
(1)作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)作出△ABC關(guān)于y對(duì)稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長(zhǎng);
(3)如圖2,在AB上取一點(diǎn)H,且BH=CF,若以BC為x軸,AB為y軸建立直角坐標(biāo)系,問在直線BD上是否存在點(diǎn)P,使得以B、H、P為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫出所有符合條件的P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某物流公司的甲.乙兩輛貨車分別從A.B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,如圖是甲.乙兩車間的距離(千米)與乙車出發(fā)(時(shí))的函數(shù)圖像
(1)A.B兩地的距離是_____千米;
(2)甲車出發(fā)______小時(shí)到達(dá)C地;
(3)坐標(biāo)系中a的值為________千米;
(4)乙車出發(fā)多長(zhǎng)時(shí)間,兩車相距150千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,請(qǐng)按要求畫圖和填空:
(1)在網(wǎng)格中畫出△ABC向下平移5個(gè)單位得到的△A1B1C1;
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于直線l對(duì)稱的△A2B2C2;
(3)在網(wǎng)格中畫出將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90度得到的△AB3C3;
(4)在圖中探究并求得△ABC的面積= (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接DE.
(1)求證:DE是半圓⊙O的切線;
(2)若∠BAC=30°,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ACB=90°,AC=BC,AE 是 BC 邊的中線,過點(diǎn)C 作 CF⊥AE,垂足為點(diǎn) F,過點(diǎn) B 作 BD⊥BC 交 CF 的延長(zhǎng)線于點(diǎn) D.
(1)試證明:AE=CD;
(2)若 AC=12cm,求線段 BD 的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com