【題目】如圖,在直角坐標平面內(nèi)有兩點A(0,2)、B(﹣2,0)、C(2,0).
(1)△ABC的形狀是 等腰直角三角形;
(2)求△ABC的面積及AB的長;
(3)在y軸上找一點P,如果△PAB是等腰三角形,請直接寫出點P的坐標.
【答案】(1)等腰直角三角形,(2);(3)P(0,2)或P(0,﹣2)或P(0,2﹣)或P(0,2+)或P(0,0).
【解析】試題分析:(1)根據(jù)點的坐標判斷出OA=OB=OC,從而得出結(jié)論;
(2)根據(jù)點的坐標求出求出BC,OA,再用三角形面積公式即可;
(3)設(shè)出點P坐標,根據(jù)平面坐標系中,兩點間的距離公式表示出BP,AP,再分三種情況計算即可.
試題解析:∵A(0,2)、B(﹣2,0)、C(2,0).
∴OB=OC=OA,
∴△ABC是等腰三角形,
∵AO⊥BC,
∴△ABC是等腰直角三角形.
故答案為等腰直角三角形,
(2)∵A(0,2)、B(﹣2,0)、C(2,0).
∴BC=4,OA=2,
∴S△ABC=BC×AO=×4×2=4,
∵A(0,2)、B(﹣2,0),
∴AB=,
(3)設(shè)點P(0,m),
∵A(0,2)、B(﹣2,0),
∴AB=2,BP=,AP=|m﹣2|,
∵△PAB是等腰三角形,
∴①當AB=BP時,
∴2=,
∴m=±2,
∴P(0,2)或P(0,﹣2),
②當AB=AP時,
∴2=|m﹣2|,
∴m=2+2或m=2﹣2,
∴P(0,2﹣2)或P(0,2+2)
③當AP=BP時,
∴|m﹣2|=,
∴m=0,
∴P(0,0),
∴P(0,2)或P(0,﹣2)或P(0,2﹣2)或P(0,2+2)或P(0,0).
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=kx過點(1,2),與直線l2:y=﹣3x+b相交于點A,若l2與x軸交于點B(2,0),與y軸交于點C.
(1)分別求出直線11,l2的解析式;
(2)求△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動點,PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點,則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項活動課程以提升學生的體藝素養(yǎng),隨機抽取了部分學生對這三項活動的興趣情況進行了調(diào)查(每人從中只能選一項),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計圖補充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)已知該校有1200名學生,請你根據(jù)樣本估計全校學生中喜歡剪紙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是邊AD的中點,連接BE、CE.
(1)求證:△ABE≌△DCE;
(2)當BC=2AB,求∠BEC的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=-x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過A1點作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…依次進行下去,則點A2019的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知Rt△ABC的斜邊AB在平面直角坐標系的x軸上,點C(1,3)在反比例函數(shù)y=的圖象上,且sin∠BAC=.
(1)求k的值和邊AC的長;
(2)求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD繞點A逆時針旋轉(zhuǎn)30°,得到□AB′C′D′(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點,點D′與點D是對應(yīng)點),點B′恰好落在BC邊上,則∠C=( 。
A. 105°B. 170°C. 155°D. 145°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com