【題目】(1)計算:(﹣2)1﹣|﹣|+(﹣1)0+cos45°.

(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.

【答案】(1);(2)15.

【解析】試題分析:(1)原式第一項利用負指數(shù)冪法則計算,第二項利用絕對值的代數(shù)意義化簡,第三項利用零指數(shù)冪法則計算,最后一項利用特殊角的三角函數(shù)值計算即可得到結果;

2)原式利用多項式乘以多項式,完全平方公式化簡,去括號合并得到最簡結果,把已知等式代入計算即可求出值.

試題解析:(1)原式=--+1+

=.

2)(m-1)(2m-1-m+12+1

=2m2-m-2m+1-m2+2m+1+1

=2m2-m-2m+1-m2-2m-1+1

=m2-5m+1,

m2-5m=14時,

原式=m2-5m+1=14+1=15

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】實踐與探究

寬與長的比是(約0.618)的矩形叫做黃金矩形。黃金矩形給我們以協(xié)調、均勻的美感。世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設計。

下面我們通過折紙得到黃金矩形。

第一步,在一張矩形紙片的一端,利用圖1的方法折出一個正方形,然后把紙片展平。

第二步,如圖2,把這個正方形折成兩個相等的矩形,再把紙片展平,折痕是。

第三步,折出內側矩形的對角線,并把折到圖3中所示的處,折痕為。

第四步,展平紙片,按照所得的點折出,使;過點折出折痕,使。

1)上述第三步將折到處后,得到一個四邊形,請判斷四邊形的形狀,并說明理由。

2)上述第四步折出折痕后得到一個四邊形,這個四邊形是黃金矩形,請你說明理由。(提示:設的長度為2

3)在圖4中,再找出一個黃金矩形_______________________________(黃金矩形除外,直接寫出答案,不需證明,可能參考數(shù)值:

4)請你舉一個采用了黃金矩形設計的世界名建筑_________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】借助下面的材料,

材料:在學習絕對值時,老師教過我們絕對值的幾何含義,如|53|表示5、3在數(shù)軸上對應的兩點之間的距離:|5+3||5﹣(﹣3|,所以|5+3|表示5、﹣3在數(shù)軸上對應的兩點之間的距離:|5||50|,所以|5|表示5在數(shù)軸上對應的點到原點的距離.一般地,點AB在數(shù)軸上分別表示有理數(shù)a,b,那么點A、點B之間的距離可表示為|ab|

問題:如圖,數(shù)軸上AB兩點對應的有理數(shù)分別為﹣812,點P從點O出發(fā),以每秒1個單位長度的速度沿數(shù)軸負方向運動,點Q同時從點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設運動時間為t秒.

1)求經過2秒后,數(shù)軸點P、Q分別表示的數(shù);

2)當t3時,求PQ的值;

3)在運動過程中是否存在時間t使APAB,若存在,請求出此時t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】概念學習

規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為等角三角形

從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是等角三角形,我們把這條線段叫做這個三角形的等角分割線

理解概念

1)如圖1,在RtABC中,∠ACB90°,CDAB,請寫出圖中兩對等角三角形

概念應用

2)如圖2,在ABC中,CD為角平分線,∠A40°,∠B60°.求證:CDABC的等角分割線.

3)在ABC中,∠A42°,CDABC的等角分割線,直接寫出∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+32kx+k2+10的兩個實數(shù)根分別是x1、x2,當|x1|+|x2|7時,那么k的值是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是用長度相等的小棒按一定規(guī)律擺成的一組圖案.

1)第1個圖案中有6根小棒;第2個圖案中有   根小棒;第3個圖案中有   根小棒;

2)第n個圖案中有多少根小棒?

3)第25個圖案中有多少根小棒?

4)是否存在某個符合上述規(guī)律的圖案,由2032根小棒擺成?如果有,指出是滴幾個圖案;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,MBC的中點,且AM=9,BD=12,AD=10,則ABCD的面積是( 。

A. 30B. 36C. 54D. 72

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+4x軸交于A、B兩點,與y軸交于C點,點P是拋物線上的一個動點且在第一象限,過點Px軸的垂線,垂足為D,交直線BC于點E.

(1)求點A、B、C的坐標和直線BC的解析式;

(2)求ODE面積的最大值及相應的點E的坐標;

(3)是否存在以點P、O、D為頂點的三角形與OAC相似?若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會向全校名學生發(fā)起了愛心捐款活動,為了解捐款情況,學生會隨機調查了部分學生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖1和圖2,請根據(jù)相關信息,解答下列問題:

1)本次接受隨機抽樣調查的學生人數(shù)為 人,圖的值是

2)補全圖2的統(tǒng)計圖.

3)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

4)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為元的學生人數(shù).

查看答案和解析>>

同步練習冊答案