在△ABC中,
(1)已知∠A=2∠C,∠B-∠C=60°,求∠B和∠C的大;
(2)已知∠A=
1
3
∠B=
1
5
∠C,求△ABC各個內(nèi)角的大小.
考點:三角形內(nèi)角和定理
專題:
分析:(1)把∠A,∠B都用∠C表示,進一步利用三角形的內(nèi)角和求得答案即可;
(2)把∠C,∠B都用∠A表示,進一步利用三角形的內(nèi)角和求得答案即可.
解答:解:(1)∵∠B-∠C=60°,
∴∠B=∠C+60°,
∵∠A+∠B+∠C=180°,
∴2∠C+∠C+60°+∠C=180°
∴∠C=30°,
∴∠B=∠C+60°=90°.
(2)∵∠A=
1
3
∠B=
1
5
∠C,
∴∠B=3∠A,∠C=5∠A,
∵∠A+∠B+∠C=180°,
∴∠A+3∠A+5∠A=180°
∴∠A=20°,
∴∠B=3∠A=60°,∠C=5∠A=100°.
點評:此題考查三角形的內(nèi)角和,解決問題的關(guān)鍵,是用一個角來表示其他角,進一步列方程解決問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

計算:(3x+4)(3x-4)-(2x+3)(3x-2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,在Rt△ABC中,∠ACB=90°,點D是斜邊AB的中點,連接CD,BE⊥CD于點E.AB=10,S△ABC=24.
(1)求AC的長度;
(2)求BE的長度;
(3)連接AE,求△ADE的面積S△ADE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知點A、B在數(shù)軸上分別表示數(shù)a、b
(1)對照數(shù)軸填寫下表:
a6-6-6-62-1.5
b404-4-10-1.5
A、B兩點的距離
 
 
 
 
 
 
(2)若A、B兩點間的距離記為d,試問d和a、b有何數(shù)量關(guān)系?
(3)在數(shù)軸上標出所有符合條件的整數(shù)點P,使它到4和-3的距離之和為7,并求所有這些整數(shù)的和.
(4)若點C表示的數(shù)為x,當點c在什么位置時,|x+1|+|x-2|取得的值最小?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算或化簡:
(1)(-
1
3
2÷
1
33
-12×(
2
3
-
1
6

(2)6(
2
3
x2-xy+
1
2
y2)-2(x2+
1
2
xy+
3
2
y2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,求∠ACB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在計算多項式M加上x2-3x+7時,因誤加上x2+3x+7,得答案是15x2+2x-4,試求出M和這個問題中的正確答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(-1-4a)(1-4a)=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算(m-
1
n
)÷(n-
1
m
)的結(jié)果為
 

查看答案和解析>>

同步練習冊答案