【題目】已知如圖,直線AB、CD相交于點O,∠COE=90°,若∠BOD:∠BOC=1:5.
(1)求∠AOC的度數;
(2)如圖,過點O作OF⊥AB,求∠DOF與∠EOF的度數.
【答案】(1) ∠AOC=30°; (2)∠DOF=60°,∠EOF=150°.
【解析】
(1)根據平角的定義可求∠BOD,根據對頂角的定義可求∠AOC的度數;(2)根據平角的定義可求∠EOD,根據垂直的定義可求∠DOF的度數,進而求出∠EOF的度數.
(1)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°
∴∠BOD°=30°,
∵∠BOD與∠AOC是對頂角
∴∠AOC=∠BOD=30°;
(2)∠EOD=180°-∠EOC=90°
∵OF⊥AB
∴∠BOF =90°,
∴∠DOF=∠BOF-∠BOD=90°-30°=60°
∴∠EOF=∠EOD+∠DOF=90°+60°=150°.
科目:初中數學 來源: 題型:
【題目】我們知道,三角形的三條中線一定會交于一點,這一點就叫做三角形的重心.重心有很多美妙的性質,如關于線段比.面積比就有一些“漂亮”結論,利用這些性質可以解決三角形中的若干問題.請你利用重心的概念完成如下問題:
(1)若O是△ABC的重心(如圖1),連結AO并延長交BC于D,證明: ;
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點,且滿足 ,試判斷O是△ABC的重心嗎?如果是,請證明;如果不是,請說明理由;
(3)若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點重合)(如圖3),S四邊形BCHG , S△AGH分別表示四邊形BCHG和△AGH的面積,試探究 的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個三角形全等,那么添加的條件不正確的是( )
A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,銳角△ABC中,D,E分別是AB,AC邊上的點,△ADC≌△ADC',△AEB≌△AEB',且C'D∥EB'∥BC,記BE,CD交于點F,若∠BAC=x°,則∠BFC的大小是_____°.(用含x的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調查(每位同學只選取最關注的一個),根據調查結果繪制了兩幅不完整的統(tǒng)計圖,根據圖中提供的信息,
解答下列問題:
(1)這次調查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整;并寫出這次主題班會調查結果的眾數是;中位數落在的區(qū)域是 .
(3)若該校學生人數為800人,請根據上述調查結果,估計該校學生中“感恩”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
證明:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動點P從點A出發(fā),以每秒1 cm的速度,沿ABC路線向點C運動;動點Q從點O出發(fā),以每秒2 cm的速度,沿OED路線向點D運動.若P,Q兩點同時出發(fā),其中一點到達終點時,運動停止.
(1)直接寫出B,C,D三個點的坐標;
(2)當P,Q兩點出發(fā)3 s時,求三角形PQC的面積;
(3)設兩點運動的時間為t s,用含t的式子表示運動過程中三角形OPQ的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC邊上的任意一點,聯結DM,聯結AM.
(1)若AM平分∠BMD,求BM的長;
(2)過點A作AE⊥DM,交DM所在直線于點E.
①設BM=x,AE=y求y關于x的函數關系式;
②聯結BE,當△ABE是以AE為腰的等腰三角形時,請直接寫出BM的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com