某公司投資700萬元購甲、乙兩種產(chǎn)品的生產(chǎn)技術和設備后,進行這兩種產(chǎn)品加工.已知生產(chǎn)甲種產(chǎn)品每件還需成本費30元,生產(chǎn)乙種產(chǎn)品每件還需成本費20元.經(jīng)市場調(diào)研發(fā)現(xiàn):甲種產(chǎn)品的銷售單價為x(元),年銷售量為y(萬件),當35≤x<50時,y與x之間的函數(shù)關系式為y=20﹣0.2x;當50≤x≤70時,y與x的函數(shù)關系式如圖所示,乙種產(chǎn)品的銷售單價,在25元(含)到45元(含)之間,且年銷售量穩(wěn)定在10萬件.物價部門規(guī)定這兩種產(chǎn)品的銷售單價之和為90元.

(1)當50≤x≤70時,求出甲種產(chǎn)品的年銷售量y(萬元)與x(元)之間的函數(shù)關系式.
(2)若公司第一年的年銷售量利潤(年銷售利潤=年銷售收入﹣生產(chǎn)成本)為W(萬元),那么怎樣定價,可使第一年的年銷售利潤最大?最大年銷售利潤是多少?
(3)第二年公司可重新對產(chǎn)品進行定價,在(2)的條件下,并要求甲種產(chǎn)品的銷售單價x(元)在50≤x≤70范圍內(nèi),該公司希望到第二年年底,兩年的總盈利(總盈利=兩年的年銷售利潤之和﹣投資成本)不低于85萬元.請直接寫出第二年乙種產(chǎn)品的銷售單價m(元)的范圍.
(1)(50≤x≤70)。
(2)甲、乙兩種產(chǎn)品定價均為45元時,第一年的年銷售利潤最大,最大年銷售利潤是415萬元。
(3)30≤m≤40。

分析:(1)設y與x的函數(shù)關系式為y=kx+b(k≠0),然后把點(50,10),(70,8)代入求出k、b的值即可得解。
(2)先根據(jù)兩種產(chǎn)品的銷售單價之和為90元,根據(jù)乙種產(chǎn)品的定價范圍列出不等式組求出x的取值范圍是45≤x≤65,然后分45≤<50,50≤x≤70兩種情況,根據(jù)銷售利潤等于兩種產(chǎn)品的利潤之和列出W與x的函數(shù)關系式,再利用二次函數(shù)的增減性確定出最大值,從而得解。
(3)用第一年的最大利潤加上第二年的利潤,然后根據(jù)總盈利不低于85萬元列出不等式,整理后求解即可:
根據(jù)題意得,,
由W=85,則,解得x1=20,x2=60.
又由題意知,50≤x≤70,根據(jù)函數(shù)性質(zhì)分析,50≤x≤60,即50≤90-m≤60,∴30≤m≤40!
解:(1)設y與x的函數(shù)關系式為y=kx+b(k≠0),
∵函數(shù)圖象經(jīng)過點(50,10),(70,8),
,解得
∴甲種產(chǎn)品的年銷售量y(萬元)與x(元)之間的函數(shù)關系式為(50≤x≤70)。
(2)∵乙種產(chǎn)品的銷售單價在25元(含)到45元(含)之間,
,之得45≤x≤65。
①當45≤x<50時,
,
∵﹣0.2<0,∴x>40時,W隨x的增大而減小。
∴當x=45時,W有最大值,(萬元)。
②50≤x≤70時,

∵﹣0.1<0,∴x>40時,W隨x的增大而減小。
當x=50時,W有最大值,(萬元)。
綜上所述,當x=45,即甲、乙兩種產(chǎn)品定價均為45元時,第一年的年銷售利潤最大,最大年銷售利潤是415萬元。
(3)30≤m≤40。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

某游泳池有水4000m3,先放水清洗池子.同時,工作人員記錄放水的時間x(單位:分鐘)與池內(nèi)水量y(單位:m3) 的對應變化的情況,如下表:
時間x(分鐘)

10
20
30
40

水量y(m3

3750
3500
3250
3000

(1)根據(jù)上表提供的信息,當放水到第80分鐘時,池內(nèi)有水多少m3
(2)請你用函數(shù)解析式表示y與x的關系,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標;
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

M(1,a)是一次函數(shù)與反比例函數(shù)圖象的公共點,若將一次函數(shù)的圖象向下平移4個單位,則它與反比例函數(shù)圖象的交點坐標為     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為預防甲型H1N1流感,某校對教室噴灑藥物進行消毒.已知噴灑藥物時每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.

(1)求噴灑藥物時和噴灑完后,y關于x的函數(shù)關系式;
(2)若空氣中每立方米的含藥量低于2毫克學生方可進教室,問消毒開始后至少要經(jīng)過多少分鐘,學生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時間不低于10分鐘時,才能殺滅流感病毒,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

“五•一”假期,某火車客運站旅客流量不斷增大,旅客往往需要長時間排隊等候檢票.經(jīng)調(diào)查發(fā)現(xiàn),在車站開始檢票時,有640人排隊檢票.檢票開始后,仍有旅客繼續(xù)前來排隊檢票進站.設旅客按固定的速度增加,檢票口檢票的速度也是固定的.檢票時,每分鐘候車室新增排隊檢票進站16人,每分鐘每個檢票口檢票14人.已知檢票的前a分鐘只開放了兩個檢票口.某一天候車室排隊等候檢票的人數(shù)y(人)與檢票時間x(分鐘)的關系如圖所示.

(1)求a的值.
(2)求檢票到第20分鐘時,候車室排隊等候檢票的旅客人數(shù).
(3)若要在開始檢票后15分鐘內(nèi)讓所有排隊的旅客都能檢票進站,以便后來到站的旅客隨到隨檢,問檢票一開始至少需要同時開放幾個檢票口?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

列函數(shù)中,y隨x的增大而減少的函數(shù)是【   】
A.y=2x+8B.y=﹣2+4xC.y=﹣2x+8D.y=4x

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知點P(a,b)在一次函數(shù)y=4x+3的圖象上,則代數(shù)式4a﹣b﹣2的值等于   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將一次函數(shù)圖像向下平移個單位,與雙曲線交于點A,與軸交于點B,則=(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案