【題目】如圖,線段AB表示一條對折的繩子,現(xiàn)從P點將繩子剪斷.剪斷后的各段繩子中最長的一段為30cm.若AP=BP,則原來繩長為( 。cm.
A. 55cmB. 75cmC. 55或75cmD. 50或75cm
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,D為AC中點,過點D作DE∥BC,交AB于點E.
(1)求證:AE=DE;
(2)若∠C=65°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90。 , 0B=2OA,點A在反比例函數(shù) 的圖象上,點B在反比例函數(shù) 的圖象上,則k的值是( )
A.-4
B.4
C.-2
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點A,C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B,D.
(1)求點A的坐標(用m表示);
(2)求拋物線的解析式;
(3)設點Q為拋物線上點P至點B之間的一動點,連接PQ并延長交BC于點E,連接BQ并延長交AC于點F,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線Y=ax2+bx一3與X軸相交于A(一1,0),B(3,0),P為拋物線上第四象限上的點.
(1)求該拋物線的函數(shù)關系式.
(2)過點P作PD⊥X軸于點D,PD交BC于點E,當線段PE的長度最大時,求點P的坐標.
(3)當線段PE的長度最大時,作PF ⊥BC于點F,連結DF.在射線PD上有一點Q,滿足∠PQB=∠DFB,問在坐標軸上是否存在一點R,使得S△RBE=S△QBE;如果存在,直接寫出R點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小丁在研究數(shù)學問題時遇到一個定義:對于排好順序的三個數(shù): ,稱為數(shù)列.計算, , 將這三個數(shù)的最小值稱為數(shù)列的價值.例如,對于數(shù)列2,﹣1,3,因為, , ,所以數(shù)列2,﹣1,3的價值為.
小丁進一步發(fā)現(xiàn):當改變這三個數(shù)的順序時,所得到的數(shù)列都可以按照上述方法計算其相應的價值.如數(shù)列﹣1,2,3的價值為;數(shù)列3,﹣1,2的價值為1;….經過研究,小丁發(fā)現(xiàn),對于“2,﹣1,3”這三個數(shù),按照不同的排列順序得到的不同數(shù)列中,價值的最小值為.根據(jù)以上材料,回答下列問題:
(1)數(shù)列﹣4,﹣3,2的價值為 ;
(2)將“﹣4,﹣3,2”這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列,這些數(shù)列的價值的最小值為 ,取得價值最小值的數(shù)列為 (寫出一個即可);
(3)將2,﹣9,a(a>1)這三個數(shù)按照不同的順序排列,可得到若干個數(shù)列.若這些數(shù)列的價值的最小值為1,則a的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小晶設計的“作互相垂直的兩條直線”的尺規(guī)作圖過程.
作法:如圖,
①在平面內任選一點O,作射線OA,OB;
②以O為圓心,以任意長為半徑作弧,分別交OA于點C,交OB于點D;
③分別以C,D為圓心,以大于CD的同樣長為半徑作弧,兩弧交于∠AOB內部一點P;
④連接CP、PD;
⑤作直線OP,作直線CD,兩直線相交于點E;則直線CD與OP就是所求作的互相垂直的兩條直線.根據(jù)小晶設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OC= ,CP= ,OP=OP
∴△OPC≌△OPD
∴∠AOP=∠BOP.
∴OE是△COD的高線( )(填推理的依據(jù))
即OE⊥CD.
∴CD與OP互相垂直
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com