【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn)是邊中點(diǎn),點(diǎn)在邊上,且,設(shè)與交于點(diǎn),則的面積是________.
【答案】
【解析】
過(guò)點(diǎn)G作GM⊥AD于M,如圖,先證明△ABE∽△DEF,利用相似三角形的性質(zhì)計(jì)算出DF=,再利用正方形的性質(zhì)判斷△DGM為等腰直角三角形得到DM=MG,設(shè)DM=x,則MG=x,EM=1-x,然后證明△EMG∽△EDF,再利用相似三角形的性質(zhì)計(jì)算出GM,再利用三角形面積公式計(jì)算S△DEG即可.
過(guò)點(diǎn)G作GM⊥AD于M,如圖,
∵FE⊥BE,
∴∠AEB+∠DEF=90°,
而∠AEB+∠ABE=90°,
∴∠ABE=∠DEF,
而∠A=∠EDF,
∴△ABE∽△DEF,
∴AB:DE=AE:DF,即2:1=1:DF,
∴DF=,
∵四邊形ABCD為正方形,
∴∠ADB=45°,
∴△DGM為等腰直角三角形,
∴DM=MG,
設(shè)DM=x,則MG=x,EM=1-x,
∵M(jìn)G∥DF,
∴△EMG∽△EDF,
∴MG:DF=EM:ED,即x:=(1-x):1,解得x= ,
∴DM= MG= ,
∴S△DEG=ED·MG=×1×=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,延長(zhǎng)平行四邊形的邊到,使,連結(jié)交于點(diǎn).
試說(shuō)明:;
連結(jié),相交于,連結(jié),問(wèn)與有怎樣的數(shù)量關(guān)系與位置關(guān)系,說(shuō)明理由;
若,連接,四邊形是什么特殊四邊形,說(shuō)明理由;
在的條件下,當(dāng)滿足________條件時(shí),四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,、為對(duì)角線,點(diǎn)、、、分別為、、、邊的中點(diǎn),下列說(shuō)法:
①當(dāng)時(shí),、、、四點(diǎn)共圓.
②當(dāng)時(shí),、、、四點(diǎn)共圓.
③當(dāng)且時(shí),、、、四點(diǎn)共圓.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將兩個(gè)全等的三角板如圖擺放,其中△ABC和ΔADE的直角頂點(diǎn)重合在點(diǎn)A處,∠ADE=∠ABC=60°,且點(diǎn)D在AC上,點(diǎn)B在AE上,∠C=∠E=30°,AB=AD,AC=AE,BC=DE,BC和DE相交于點(diǎn)F.求證:CF=EF.
(2)如圖2,將這兩個(gè)三角板如圖擺放,直角頂點(diǎn)A仍然重合,BC與DE相交于點(diǎn)F,AC與DE交于點(diǎn)M,AE和BC交于點(diǎn)N.猜想CF和EF還相等嗎?說(shuō)明理由.
(3)如圖3,在(2)的基礎(chǔ)上,若∠DAM=30°.求證:線段DF和AC互相垂直平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市“青山綠水”行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,經(jīng)投標(biāo)由甲、乙兩個(gè)工程隊(duì)來(lái)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用6天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.5萬(wàn)元,社區(qū)要使這次綠化的總費(fèi)用不超過(guò)40萬(wàn)元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點(diǎn),連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個(gè)條件,這個(gè)條件可以是 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D、E、F分別為邊BC、AD、CE的中點(diǎn),若△ABC的面積為16,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.
(1)求證:∠FBD=∠CAD;
(2)求證:BE⊥AC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com