【題目】如圖,在四邊形中,為對角線,點、、分別為、邊的中點,下列說法:

時,、、四點共圓.

時,、、四點共圓.

時,、、四點共圓.

其中正確的是(

A. ①② B. ①③ C. ②③ D. ①②③

【答案】C

【解析】

連接EM、MF、FN、NE,連接EF、MN,交于點O,利用三角形中位線定理可證到四邊形ENFM是平行四邊形;然后根據(jù)條件判定四邊形ENFM的形狀,就可知道M、E、N、F四點是否共圓.

解:連接EM、MF、FN、NE,連接EF、MN,交于點O,如圖所示.

∵點M、E、N、F分別為AD、AB、BC、CD邊的中點,

∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.

∴四邊形ENFM是平行四邊形.

①當AC=BD時,

則有EM=EN,

所以平行四邊形ENFM是菱形.

而菱形的四個頂點不一定共圓,

故①不一定正確.

②當AC⊥BD時,

EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.

所以平行四邊形ENFM是矩形.

則有OE=ON=OF=OM.

所以M、E、N、F四點共圓,

故②正確.

③當AC=BDAC⊥BD時,

同理可得:四邊形ENFM是正方形.

則有OE=ON=OF=OM

所以M、E、N、F四點共圓,

故③正確.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,先描出點,點.

1)描出點關于軸的對稱點的位置,寫出的坐標 ;

2)用尺規(guī)在軸上找一點,使的值最小(保留作圖痕跡);

3)用尺規(guī)在軸上找一點,使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為直線,則下列結論正確的是(

A. B. 方程的兩個根是,

C. D. 時,的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,EAC的中點,AD平分∠BAC,BA:CA=2:3,ADBE相交于點O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點DBC上,△ADE是等腰三角形,AD AE ,∠DAE 100°,當DEAC時,求∠BAD和∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是菱形的對角線的交點,、分別是、的中點.下列結論:①;②四邊形也是菱形;③四邊形的面積為;;是軸對稱圖形.其中正確的結論有(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點、分別在、上,且,

如果,那么四邊形________形;

如果的角平分線,那么四邊形________形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形中,點是邊中點,點在邊上,且,設交于點,則的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,對角線、相交于點,,點上一動點,點的速度從點出發(fā)沿向點運動.設運動時間為,當________時,為等腰三角形.

查看答案和解析>>

同步練習冊答案