【題目】中華文明,源遠(yuǎn)流長(zhǎng):中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 20 | 0.10 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.30 |
90≤x≤100 | 80 | 0.40 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a=______,b=______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在_____________分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等約有多少人?
【答案】(1)60,0.15;(2)見(jiàn)解析;(3)80≤x<90;(4)1200.
【解析】
試題(1)樣本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;
(2)補(bǔ)全頻數(shù)分布直方圖,如下:
(3)一共有200個(gè)數(shù)據(jù),按照從小到大的順序排列后,第100個(gè)與第101個(gè)數(shù)據(jù)都落在第四個(gè)分?jǐn)?shù)段,
所以這次比賽成績(jī)的中位數(shù)會(huì)落在80≤x<90分?jǐn)?shù)段;
(4)3000×0.40=1200(人).即該校參加這次比賽的3000名學(xué)生中成績(jī)“優(yōu)”等的大約有1200人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,等邊△ABC內(nèi)接于⊙O,點(diǎn)P是⌒AB上的任意一點(diǎn),連結(jié)PA,PB,PC.點(diǎn)D是PC上一點(diǎn),連結(jié)DB.
(1) 若PD=PB,求∠PBD的度數(shù);
(2)在(1)的條件下,小麗探究的值,她認(rèn)為只要弄清PA+PB與PC的關(guān)系即可,她的思路可以用以下框圖表示:
根據(jù)小麗的思路,請(qǐng)你完整地書(shū)寫(xiě)本題的探究過(guò)程,并求出的值.
(3)如圖2,把條件“等邊△ABC”改為“正方形ABCD”,其余條件不變,判斷是定值嗎?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對(duì)邊中點(diǎn)連線剪開(kāi),然后對(duì)接為一個(gè)長(zhǎng)方形,則此長(zhǎng)方形的周長(zhǎng)為___;第二次,再沿長(zhǎng)方形的對(duì)邊(長(zhǎng)方形的寬)中點(diǎn)連線剪開(kāi),對(duì)接為新的長(zhǎng)方形,如此繼續(xù)下去,第n次得到的長(zhǎng)方形的周長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD的邊長(zhǎng)為1.∠ADC=60°,等邊△AEF兩邊分別交邊DC、CB于點(diǎn)E、F.
(1)特殊發(fā)現(xiàn):如圖1,若點(diǎn)E、F分別是邊DC、CB的中點(diǎn).求證:菱形ABCD對(duì)角線AC、BD交點(diǎn)O即為等邊△AEF的外心;
(2)若點(diǎn)E、F始終分別在邊DC、CB上移動(dòng).記等邊△AEF的外心為點(diǎn)P.
①猜想驗(yàn)證:如圖2.猜想△AEF的外心P落在哪一直線上,并加以證明;
②拓展運(yùn)用:如圖3,當(dāng)△AEF面積最小時(shí),過(guò)點(diǎn)P任作一直線分別交邊DA于點(diǎn)M,交邊DC的延長(zhǎng)線于點(diǎn)N,試判斷是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在x軸正半軸上,AO=AB,OB=4,tan∠AOB=2,點(diǎn)C是線段OA的中點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)若點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),使得∠APO=∠CBO,拋物線y=ax2+bx經(jīng)過(guò)點(diǎn)A、點(diǎn)P,求這條拋物線的函數(shù)解析式;
(3)在(2)的條件下,點(diǎn)M是拋物線圖象上的一個(gè)動(dòng)點(diǎn),以M為圓心的圓與直線OA相切,切點(diǎn)為點(diǎn)N,點(diǎn)A關(guān)于直線MN的對(duì)稱(chēng)點(diǎn)為點(diǎn)D.請(qǐng)你探索:是否存在這樣的點(diǎn)M,使得△MAD∽△AOB?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊AB在x軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)Q的坐標(biāo)為(0,2).點(diǎn)P(x,0)在邊AB上運(yùn)動(dòng),若過(guò)點(diǎn)Q、P的直線將矩形ABCD的周長(zhǎng)分成2:1兩部分,則x的值為( 。
A. 或-B. 或-C. 或-D. 或-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),點(diǎn)A坐標(biāo)為(m,2),點(diǎn)B坐標(biāo)為(﹣4,n),OA與x軸正半軸夾角的正切值為,直線AB交y軸于點(diǎn)C,過(guò)C作y軸的垂線,交反比例函數(shù)圖象于點(diǎn)D,連接OD、BD.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求四邊形OCBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分9分)如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)若△AEP是等邊三角形,連結(jié)BP,求證:△APB≌△EPC;
(3)若矩形ABCD的邊AB=6,BC=4,求△CPF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,以為圓心,為半徑作⊙,為⊙上一動(dòng)點(diǎn),連接.以為直角邊作,使,,則點(diǎn)與點(diǎn)的最小距離為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com