【題目】(1)計算:|﹣|+(﹣1)2019+2sin30°+()0
(2)解方程:
【答案】(1);(2)x=-3
【解析】
(1)利用絕對值代數(shù)意義、有理數(shù)的乘方、特殊角的三角函數(shù)值、零指數(shù)冪計算出各個數(shù)值,再運用實數(shù)的混合運算法則計算即可;
(2)直接利用分式方程的解法解方程即可.
解:(1)|﹣|+(﹣1)2019+2sin30°+(﹣)0
=+(﹣1)+2×+1
=+(﹣1)+1+1
=
(2)方程兩邊同乘以(x-2)得:x2+2+x-2=6,
則x2+x-6=0,
(x-2)(x+3)=0,
解得:x1=2,x2=﹣3,
檢驗:當x=2時,x-2=0,故x=2不是方程的根,
當x=﹣3時,x-2=﹣3-2=﹣5≠0
故x=﹣3是分式方程的解.
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班同學為了解某小區(qū)家庭月均用水情況(單位:噸),隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理:
月均用水量(噸) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
25 | 2 | 0.04 |
請解答以下問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均有水量超過20噸的家庭大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為宣傳節(jié)約用水,小明隨機調(diào)查了某小區(qū)部分家庭5月份的用水情況,并將收集的數(shù)據(jù)整理成如下統(tǒng)計圖.
(1)小明一共調(diào)查了多少戶家庭?
(2)所調(diào)查家庭5月份用水量的中位數(shù)、眾數(shù)、平均數(shù);
(3)若該小區(qū)有400戶居民,請你估計這個小區(qū)5月份的用水量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.
(1)求一次函數(shù)的表達式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線y=x2﹣2x+b的頂點在x軸上,P(p,m),Q(q,m)(p<q)是拋物線上的兩點.
(1)當m=b時,求p,q的值;
(2)將拋物線沿y軸平移,使得它與x軸的兩個交點間的距離為4,試描述出這一變化過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,老師出示了如下框中的題目:
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與DB的大小關(guān)系.請你直接寫出結(jié)論:AE_______DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”)理由如下:如圖2,過點E作EF∥BC,交AC于點F,(請你接著繼續(xù)完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線上AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為3,AE=5,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市華潤生活超市準備一次性購進A、B兩種品牌的飲料100箱,此兩種飲料每箱的進價和售價如下表所示設(shè)購進A種飲料x箱,且所購進的兩種飲料能全部賣出,獲得的總利潤為y元.
品牌 | A | B |
進價元箱 | 65 | 49 |
售價元箱 | 80 | 62 |
求y關(guān)于x的函數(shù)關(guān)系式;
由于資金周轉(zhuǎn)原因,用于超市購進A、B兩種飲料的總費用不超過5600元,并要求獲得利潤不低于1380元,則從兩種飲料箱數(shù)上考慮,共有哪幾種進貨方案?利潤售價進價
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,過點B作BE⊥CD于點E,延長CD到點F,使DF=CE,連接AF.
(1)求證:四邊形ABEF是矩形;
(2)連接OF,若AB=6,DE=2,∠ADF=45°,求OF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求反比例函數(shù)的表達式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com