【題目】根據(jù)題意解答
(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D.
(2)閱讀下面的內(nèi)容,并解決后面的問題: 如圖2,AP、CP分別平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).
解:∵AP、CP分別平分∠BAD、∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結(jié)論得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P= (∠B+∠D)=26°.
①如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
②在圖4中,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.
③在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關(guān)系,直接寫出結(jié)論,無需說明理由.

【答案】
(1)解:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,

∴∠A+∠B+∠AOB=∠C+∠D+∠COD,

∵∠AOB=∠COD,

∴∠A+∠B=∠C+∠D


(2)解:①∠P=26゜.

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4

由(1)的結(jié)論得:∠PAD+∠P=∠PCD+∠D ①,∠PAB+∠P=∠PCB+∠B ②,

∵∠PAB=∠1,∠1=∠2,

∴∠PAB=∠2,

∴∠2+∠P=∠3+∠B ③,

①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,

∴∠P= (∠B+∠D )=26°.

②如圖4,

∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,

在四邊形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,

在四邊形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,

∴2∠P+∠B+∠D=360°,

∴∠P=180°﹣ (∠B+∠D);

③如圖5,

∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,

∴∠1=∠2,∠3=∠4,

∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,

∠2+∠P=(180°﹣∠3)+∠D,

∴2∠P=180°+∠D+∠B,

∴∠P=90°+ (∠B+∠D).


【解析】(1)根據(jù)三角形的內(nèi)角和等于180°列式整理即可得證;(2)根據(jù)角平分線的定義可得∠1=∠2,∠3=∠4,再根據(jù)(1)的結(jié)論列出整理即可得解;①表示出∠PAD和∠PCD,再根據(jù)(1)的結(jié)論列出等式并整理即可得解;②根據(jù)四邊形的內(nèi)角和等于360°可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根據(jù)(1)的結(jié)論∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.
【考點精析】認(rèn)真審題,首先需要了解三角形的內(nèi)角和外角(三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角),還要掌握三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求計算:
(1)計算:| |+ +
(2)解方程組: ①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校初一年級參加社會實踐課,報名第一門課的有x人,第二門課的人數(shù)比第一門課的 少20人,現(xiàn)在需要從報名第二門課的人中調(diào)出10人學(xué)習(xí)第一門課,那么:
(1)報兩門課的共有多少人?
(2)調(diào)動后,報名第一門課的人數(shù)為人,第二門課人數(shù)為人.
(3)調(diào)動后,報名第一門課比報名第二門課多多少人?計算出代數(shù)式后,請選擇一個你覺得合適的x的值代入,并求出具體的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長度的線段能組成三角形的是(

A. 3、4、8 B. 5、611 C. 5、610 D. 3、510

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CE是△ABC外角∠ACD的平分線,AF∥CD交CE于點F,F(xiàn)G∥AC交CD于點G,求證:四邊形ACGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(

A. 5a-3a=2 B. 3x2+2x=5x3 C. -8ab+5ab=-3ab D. 2x2y-2xy2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】命題“直徑所對的圓周角是直角”的逆命題是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件進(jìn)價為100元的商品,先按進(jìn)價提高20%作為標(biāo)價,但因銷量不好,又決定按標(biāo)價降價20%出售。那么這次生意的盈虧情況是每件(

A. 不虧不賺 B. 虧了4 C. 賺了4 D. 賺了6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四個小組的同學(xué)分別參加了班里組織的中華古詩詞知識競賽,在相同條件下各小組的成績?nèi)缦卤硭,若要從中選擇一個小組參加年級的比賽,那么應(yīng)選(

甲組

乙組

丙組

丁組

平均分

85

90

88

90

方差

3.5

3.5

4

4.2

A. 甲組B. 乙組C. 丙組D. 丁組

查看答案和解析>>

同步練習(xí)冊答案