【題目】某縣政府計劃撥款34000元為福利院購買彩電和冰箱,已知商場彩電標價為2000元/臺,冰箱標價為1800元/臺,如按標價購買兩種家電,恰好將撥款全部用完.
(1)問原計劃購買的彩電和冰箱各多少臺?
(2)購買的時候恰逢商場正在進行促銷活動,全場家電均降價進行銷售,若在不增加縣政府實際負擔的情況下,能否比原計劃多購買3臺冰箱?請通過計算回答.
【答案】(1)原計劃購買彩電8臺,購買冰箱10臺;(2)在不增加縣政府實際負擔的情況下,能比原計劃多購買3臺冰箱,計算過程見解析
【解析】
(1)設原計劃購買彩電x臺,購買冰箱y臺,根據(jù)題意列出二元一次方程,然后結合x、y的實際意義即可求出結論;
(2)先求出在購買臺數(shù)不變的情況下,還剩多少元,即可判斷結論.
解:(1)設原計劃購買彩電x臺,購買冰箱y臺
由題意可得:2000x+1800y=34000,x、y均為正整數(shù)
解得:x=8,y=10
答:原計劃購買彩電8臺,購買冰箱10臺.
(2)在購買臺數(shù)不變的情況下,還剩34000×15%=5100(元)
現(xiàn)在每臺冰箱售價為1800×(1-15%)=1530(元)
可買冰箱5100÷1530=3(臺)……510(元)
答:在不增加縣政府實際負擔的情況下,能比原計劃多購買3臺冰箱.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,C是⊙O上一點,CO⊥AB于點O,弦CD與AB交于點F.過點D作⊙O的切線交AB的延長線于點E,過點A作⊙O的切線交ED的延長線于點G.
(1)求證:△EFD為等腰三角形;
(2)若OF:OB=1:3,⊙O的半徑為3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形中,為直線上的點,為直線上的點,分別連接,,且.
(1)若,點在線段上,點在線段的延長線上,如圖①,易證:(不需證明);
(2)如圖②,若∠B=120°,點在線段上,點在線段的延長線上,如圖③,猜想線段,和之間有怎樣的數(shù)量關系?請直接寫出對圖②,圖③的猜想,并選擇其中一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,且,點為外一點,且,分別切于點、兩點.與的延長線交于點.
(1)求證:;
(2)填空
①當________時,四邊形是正方形.
②當_________時,為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點A按順時針方向旋轉45°后得到△AB’C’,若AB=2,則線段BC在上述旋轉過程中所掃過部分(陰影部分)的面積是___________ (結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)
我們知道若一個矩形是的周長固定,當相鄰兩邊相等,即為正方形時,它的面積最大.反過來,若一個矩形的面積固定,它的周長是否會有最值呢?
(探究方法)
用兩個直角邊分別為,的4個全等的直角三角形可以拼成一個正方形。若,可以拼成如圖所示的正方形,從而得到,即;當時,中間小正方形收縮為1個點,此時正方形的面積等于4個直角三角形面積的和.即.于是我們可以得到結論:,為正數(shù),總有,當且僅當時,代數(shù)式取得最小值.另外,我們也可以通過代數(shù)式運算得到類似上面的結論:
∵,∴,
∴對于任意實數(shù),總有,且當時,代數(shù)式取最小值.
使得上面的方法,對于正數(shù),,試比較和的大小關系.
(類比應用)
利用上面所得到的結論完成填空
(1)當時,代數(shù)式有最 值為 .
(2)當時,代數(shù)式有最 值為 .
(3)如圖,已知是反比例函數(shù)圖象上任意一動點,,,試求的最小面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;……按此作法繼續(xù)下去,則點A2020的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,過點A作⊙O的切線交BC的延長線于點D.
(1)求證:△DAC∽△DBA;
(2)過點C作⊙O的切線CE交AD于點E,求證:CE=AD;
(3)若點F為直徑AB下方半圓的中點,連接CF交AB于點G,且AD=6,AB=3,求CG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com