【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會減少1件.當(dāng)銷售單價(jià)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 與軸的兩個(gè)交點(diǎn)間的距離為2.
(1)若此拋物線的對稱軸為直線 ,請判斷點(diǎn)(3,3)是否在此拋物線上?
(2)若此拋物線的頂點(diǎn)為(S,t),請證明;
(3)當(dāng)時(shí),求的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是( 。
A.AB=ADB.AC⊥BDC.AC=BDD.AD=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類的目的.下面是一個(gè)案例.
原題:如圖①,點(diǎn)分別在正方形的邊上,,連接,則,試說明理由.
(1)思路梳理
因?yàn)?/span>,所以把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°至,可使與 重合.因?yàn)?/span>,所以,點(diǎn)共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中,,,點(diǎn)分別在邊上,.若都不是直角,則當(dāng)
(3)聯(lián)想拓展
如圖③,在中,,點(diǎn)均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動,當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動.
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利500元,為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)10元,商場每天可多售出2件.設(shè)每件商品降價(jià)x元(x是10的整數(shù)倍),據(jù)此信息,請回答:
(1)商場日銷量增加 件,每件商品盈利 元;(用含x的代數(shù)式表示).
(2)在上述條件不變且銷售正常的情況下,每件商品降價(jià)多少元時(shí),商場日盈利可達(dá)到21000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使△AOB的面積等于6,求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com