【題目】為緩解交通擁堵,某區(qū)擬計(jì)劃修建一地下通道,該通道一部分的截面如圖所示(圖中地面AD與通道BC平行,通道水平寬度BC8米,∠BCD=135°,通道斜面CD的長(zhǎng)為6米,通道斜面AB的坡度i=1:

(1)求通道斜面AB的長(zhǎng);

(2)為增加市民行走的舒適度,擬將設(shè)計(jì)圖中的通道斜面CD的坡度變緩,修改后的通道斜面DE的坡角為30°,求此時(shí)BE的長(zhǎng).

(答案均精確到0.1米,參考數(shù)據(jù):≈1.41,≈2.24,≈2.45)

【答案】(1)通道斜面AB的長(zhǎng)約為7.4米;(2)BE的長(zhǎng)約為4.9米.

【解析】

(1)過(guò)點(diǎn)AANCB于點(diǎn)N,過(guò)點(diǎn)DDMBC于點(diǎn)M,再根據(jù)∠BCD=135°,通道斜面CD的長(zhǎng)為6米,就可以得出通道的高度DM,AN=DM,再根據(jù)通道斜面AB的坡度i=1:,就可以求出通道斜面AB的長(zhǎng);(2)修改后的通道斜面DE的坡角為30°DM高度可以求出EM長(zhǎng)度,EC=EM-CM,BE=BC-EC即可得出答案

(1)過(guò)點(diǎn)AANCB于點(diǎn)N,過(guò)點(diǎn)DDMBC于點(diǎn)M,

∵∠BCD=135°,

∴∠DCM=45°.

∵在RtCMD中,∠CMD=90°,CD=6,

DM=CM=CD=3,

AN=DM=3

∵通道斜面AB的坡度i=1:,

tanABN==

BN=AN=6,

AB==3≈7.4.

即通道斜面AB的長(zhǎng)約為7.4米;

(2)∵在RtMED中,∠EMD=90°,DEM=30°,DM=3,

EM=DM=3,

EC=EM﹣CM=3﹣3,

BE=BC﹣EC=8﹣(3﹣3)=8+3﹣3≈4.9.

即此時(shí)BE的長(zhǎng)約為4.9米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù)且abc≠0)與直線l都經(jīng)過(guò)y軸上的同一點(diǎn),且拋物線的頂點(diǎn)在直線l上,則稱拋物線L與直線l具有一帶一路關(guān)系,并且將直線1叫做拋物線L路線,拋物線L叫做直線l帶線

(1)若路線”l的表達(dá)式為y=2x﹣4,它的帶線”L的頂點(diǎn)的橫坐標(biāo)為﹣1,求帶線”L的表達(dá)式;

(2)如果拋物線y=2x2﹣4x+1與直線y=nx+1具有一帶一路關(guān)系,如圖,設(shè)拋物線與x軸的一個(gè)交點(diǎn)為A,與y軸交于點(diǎn)B,其頂點(diǎn)為C.

△ABC的面積;

y軸上是否存在一點(diǎn)P,使SPBC=SABC,若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于二次函數(shù),以下結(jié)論:①拋物線交軸有兩個(gè)不同的交點(diǎn);②不論取何值,拋物線總是經(jīng)過(guò)一個(gè)定點(diǎn);③設(shè)拋物線交軸于、兩點(diǎn),若,則;④拋物線的頂點(diǎn)在圖象上;⑤拋物線交軸于點(diǎn),若是等腰三角形,則,,.其中正確的序號(hào)是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形的對(duì)稱軸上找點(diǎn),使得,均為等腰三角形,則滿足條件的點(diǎn)_________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,射線CMBC,且BC5,AB1,點(diǎn)P是線段BC (不與點(diǎn)B、C重合)上的動(dòng)點(diǎn),過(guò)點(diǎn)PDPAP交射線CM于點(diǎn)D,連結(jié)AD

1)如圖1,當(dāng)BP   時(shí),△ADP是等腰直角三角形.(請(qǐng)直接寫(xiě)出答案)

2)如圖2,若DP平分∠ADC,試猜測(cè)PBPC的數(shù)量關(guān)系,并加以證明.

3)若△PDC是等腰三角形,作點(diǎn)B關(guān)于AP的對(duì)稱點(diǎn)B′,連結(jié)B′D,請(qǐng)畫(huà)出圖形,并求線段B′D的長(zhǎng)度.(參考定理:若直角△ABC中,∠C是直角,則BC2+AC2AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點(diǎn)E.

(1)在AD上求作點(diǎn)F,使點(diǎn)F到CD和BC的距離相等;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

(2)判斷四邊形AECF是什么特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,CDAB于點(diǎn)G,E是CD上一點(diǎn),且BE=DE,延長(zhǎng)EB至點(diǎn)P,連結(jié)CP,使PC=PE,延長(zhǎng)BE與O交于點(diǎn)F,連結(jié)BD,F(xiàn)D.

(1)求證:CD=BF;

(2)求證:PC是O的切線;

(3)若tanF=,AG﹣BG=,求ED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過(guò)程中,點(diǎn)D到點(diǎn)O的最大距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,且DEAC,CEBD,若AC2,則四邊形OCED的周長(zhǎng)為(

A.16B.8C.4D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案