【題目】如圖,某地在山區(qū)修建高速公路時(shí)需挖通一條隧道,為估計(jì)這條隧道的長(zhǎng)度需測(cè)出這座山A、B間的距離,結(jié)合所學(xué)知識(shí)或方法,設(shè)計(jì)測(cè)量方案你能給出什么好的方法嗎?
【答案】見解析
【解析】
選擇一合適的地點(diǎn)O,連接AO、BO,測(cè)出AO和BO的長(zhǎng)度,延長(zhǎng)AO、BO至A′、B′,使OA′=OA,OB′=OB,連接A′B′,則A′B′的長(zhǎng)即是這座山A、B間的距離;可通過證△AOB≌△A′OB′來驗(yàn)證方案的合理性.
解:選擇一合適的地點(diǎn)O,連接AO、BO,測(cè)出AO和BO的長(zhǎng)度,延長(zhǎng)AO、BO至A′、B′,使OA′=OA,OB′=OB,連接A′B′,這樣就構(gòu)成兩個(gè)三角形,
在△AOB和△A′OB′中,
,
∴△AOB≌△A′OB′(SAS),
∴AB=A′B′.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若把不等式組的解集在數(shù)軸上表示出來,則其對(duì)應(yīng)的圖形為
A. 長(zhǎng)方形 B. 線段 C. 射線 D. 直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;
(2) 請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O,交邊BC于點(diǎn)D,點(diǎn)E是 上一點(diǎn).
(1)若AC為⊙O的切線,試說明:∠AED=∠CAD;
(2)若AE平分∠BAD,延長(zhǎng)DE、AB交于點(diǎn)P,若PB=BO,DE=2,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1) 如圖1,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù).
(2) 如圖2,當(dāng)射線OC在∠AOB內(nèi)繞點(diǎn)O旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化?說明理由.
(3) 當(dāng)射線OC在∠AOB外繞點(diǎn)O旋轉(zhuǎn)且∠AOC為鈍角時(shí),畫出圖形,直接寫出相應(yīng)的∠DOE的度數(shù).(不必寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,點(diǎn) A(2,1),點(diǎn) A 與點(diǎn) B 關(guān)于 y 軸對(duì)稱,AC∥y 軸,且 AC=3,連接 BC 交 y 軸于點(diǎn) D.
(1)點(diǎn) B 的坐標(biāo)為_____,點(diǎn) C 的坐標(biāo)為_____;
(2)如圖 2,連接 OC,OC 平分∠ACB,求證:OB⊥OC;
(3)如圖 3,在(2)的條件下,點(diǎn) P 為 OC 上一點(diǎn),且∠PAC=45°,求點(diǎn) P 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AD、BD分別平分∠CAG、∠EBA,AD∥BC,BD交AC于F,連接CD,
(1)求證:AB=AC.
(2)當(dāng)∠EBA的大小滿足什么條件時(shí),以A,B,F(xiàn)為頂點(diǎn)三角形為等腰三角形?
(3)猜想∠BDC與∠DAC之間的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com