【題目】如圖 1,點(diǎn) A(21),點(diǎn) A 與點(diǎn) B 關(guān)于 y 軸對稱,ACy 軸,且 AC=3,連接 BC y 軸于點(diǎn) D.

1)點(diǎn) B 的坐標(biāo)為_____,點(diǎn) C 的坐標(biāo)為_____;

2)如圖 2,連接 OC,OC 平分∠ACB,求證:OBOC

3)如圖 3,在(2)的條件下,點(diǎn) P OC 上一點(diǎn),且∠PAC=45°,求點(diǎn) P 的坐標(biāo).

【答案】(1)(-21 2,4);(2)見解析;(3)P(1,2)

【解析】

(1)由軸對稱可得B、C點(diǎn)坐標(biāo);

(2)由OC 平分∠ACB,可得∠1=∠2,∠3=∠2,可得CD=DO,CE⊥y 軸于點(diǎn) E,連接 AB y 軸于點(diǎn) F,可證的△CDE≌△BDF(AAS),可得CD=BD,BD=CD=OD,∠DBO=∠DOB,可得OB⊥OC;

(3)連接 BP,作 PQ⊥x 軸于點(diǎn) Q,由點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對稱 可得∠BAC =90,∠PAC =45,PA 平分∠CAB,可證的OB=OP,可得△BOF≌△POQ(AAS).可得PQ=BF=2,OQ=OF=1,P(1,2).

(1)B(-2,1),C(2,4).

(2)∵OC 平分∠ACB,

∴∠1=∠2,

∵AC∥y 軸,

∴∠3=∠2,

∴∠1=∠3,

∴CD=DO.

CE⊥y 軸于點(diǎn) E,連接 AB y 軸于點(diǎn) F,

點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對稱,

∴BF⊥y 軸,

∴∠CED=∠BFD,

∵B(-2,1),C(2,4),

∴CE=BF=2,

△CDE △BDF 中,

CED BFDCDE BDF,CE BF,

∴△CDE≌△BDF(AAS).

∴CD=BD,

∴BD=CD=OD,

∴∠DBO=∠DOB,

∵∠1+∠3+∠DBO+∠DOB=180°,

∴∠3+∠DOB=90°,

∴OB⊥OC;

(3)連接 BP,作 PQ⊥x 軸于點(diǎn) Q,

點(diǎn) A,點(diǎn) B 關(guān)于 y 軸對稱,

∴AB⊥y 軸,

∴∠BAC =90

∵∠PAC =45,

∴PA 平分∠CAB,

∵OC 平分∠ACB,

∴BP 平分∠ABC.

∴∠BPC=135°,

∴∠BPO=45°.

∵∠BOP=90°,

∴OB=OP,

△BOF △POQ 中,

BFO PQO,BOF POQ,OB OP,

∴△BOF≌△POQ(AAS).

∴PQ=BF=2,OQ=OF=1,

∴P(1,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點(diǎn)P在射線AC上,作點(diǎn)P關(guān)于直線CD的對稱點(diǎn)Q,作射線BQ交射線DC于點(diǎn)E,連接BP.

(1)當(dāng)點(diǎn)P在線段AC上時(shí),如圖1.

依題意補(bǔ)全圖1;

EQ=BP,則∠PBE的度數(shù)為   ,并證明;

(2)當(dāng)點(diǎn)P在線段AC的延長線上時(shí),如圖2.若EQ=BP,正方形ABCD的邊長為1,請寫出求BE長的思路.(可以不寫出計(jì)算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地在山區(qū)修建高速公路時(shí)需挖通一條隧道,為估計(jì)這條隧道的長度需測出這座山A、B間的距離,結(jié)合所學(xué)知識或方法,設(shè)計(jì)測量方案你能給出什么好的方法嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.
(1)求證:△ABE≌△FCE;
(2)過點(diǎn)D作DG⊥AE于點(diǎn)G,H為DG的中點(diǎn).判斷CH與DG的位置關(guān)系, 并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=mx2+(m2﹣m)x﹣2m+1的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,頂點(diǎn)D的橫坐標(biāo)為1.

(1)求二次函數(shù)的表達(dá)式及A、B的坐標(biāo);
(2)若P(0,t)(t<﹣1)是y軸上一點(diǎn),Q(﹣5,0),將點(diǎn)Q繞著點(diǎn)P順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)E.當(dāng)點(diǎn)E恰好在該二次函數(shù)的圖象上時(shí),求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點(diǎn),且∠DAE=∠MCB,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠A=30°,∠ACB=90°,點(diǎn) D AC 中點(diǎn), 點(diǎn) E AB 邊上一動點(diǎn),AE=DE,延長 ED BC 的延長線于點(diǎn) F.

1)求證:△BEF 是等邊三角形;

2)若 AB=12,求 DE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某幼兒園舉行用火柴棒擺“金魚”比賽如圖所示,請仔細(xì)觀察并找出規(guī)律,解答下列問題:

(1)按照此規(guī)律,擺第n個圖時(shí),需用火柴棒的根數(shù)是多少?

(2)求擺第50個圖時(shí)所需用的火柴棒的根數(shù);

(3)按此規(guī)律用1202根火柴棒擺出第n個圖形,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雷達(dá)二維平面定位的主要原理是:測量目標(biāo)的兩個信息距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為,目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是(

A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)

查看答案和解析>>

同步練習(xí)冊答案