【題目】如圖,AB是⊙O直徑,OC⊥AB,弦CD與OB交于點(diǎn)F,過(guò)點(diǎn)D、A分別作⊙O的切線交于點(diǎn)G,切線GD與AB延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠C+∠EDF=90°
(2)已知:AG=6,⊙O的半徑為3,求OF的值.
【答案】(1)見(jiàn)解析;(2)1
【解析】
試題分析:(1)連接OD,根據(jù)切線的性質(zhì)得OD⊥DE,則∠EDF+∠ODC=90°,而∠C=∠ODC,則∠EDF+∠C=90°.
(2)先求得EF=ED,設(shè)DE=x,則EF=x,根據(jù)切線的性質(zhì)由AG為⊙O的切線得∠ODE=90°,再證明Rt△EOD∽Rt△EGA,利用相似比求得AE=2x,OE=3+x,然后根據(jù)AE﹣OE=OA=3,求得x的值,進(jìn)而求得OF=1.
(1)證明:連接OD,
∵DE為⊙O的切線,
∴OD⊥DE,
∴∠ODE=90°,即∠EDF+∠ODC=90°,
∵OC=OD,
∴∠C=∠ODC,
∴∠C+∠EDF=90°.
(2)解:∵∠C+∠EDF=90°,∠C+∠CFO=90°,∠CFO=∠EFD,
∴∠EFD=∠EDF,
∴EF=ED,
設(shè)DE=x,則EF=x,
∵∠ODE=∠GAE,∠OED=∠GEA,
∴Rt△EOD∽Rt△EGA,
∴==,即==,
∴AE=2x,OE=3+x,
∵AE﹣OE=OA=3,
∴2x﹣(3+x)=3,解得x=4,
∴AE=2x=8,
∴OF=AE﹣EF﹣OA=8﹣3﹣4=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB表示路燈,當(dāng)身高為1.6米的小名站在離路燈1.6的D處時(shí),他測(cè)得自己在路燈下的影長(zhǎng)DE與身高CD相等,當(dāng)小明繼續(xù)沿直線BD往前走到E點(diǎn)時(shí),畫出此時(shí)小明的影子,并計(jì)算此時(shí)小明的影長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n.
(1)請(qǐng)畫出樹(shù)狀圖并寫出(m,n)所有可能的結(jié)果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第二、三、四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC垂足為點(diǎn)D,AD是BC邊上的中線,BE⊥AC,垂足為點(diǎn)E.則以下4個(gè)結(jié)論:①AB=AC;②∠EBC=;③AE=CE;④∠EBC=中正確的有( )
A.①② B.②③ C.①②③ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程或方程組解應(yīng)用題:
近年來(lái),我國(guó)逐步完善養(yǎng)老金保險(xiǎn)制度.甲、乙兩人計(jì)劃用相同的年數(shù)分別繳納養(yǎng)老保險(xiǎn)金15萬(wàn)元和10萬(wàn)元,甲計(jì)劃比乙每年多繳納養(yǎng)老保險(xiǎn)金0.2萬(wàn)元.求甲、乙兩人計(jì)劃每年分別繳納養(yǎng)老保險(xiǎn)金多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】情境觀察:
如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點(diǎn)F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 .
問(wèn)題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點(diǎn)E.
求證:AE=2CD.
拓展延伸:
如圖3,△ABC中,∠BAC=45°,AB=BC,點(diǎn)D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點(diǎn)F.求證:DF=2CE.
要求:請(qǐng)你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.點(diǎn)E為射線DC上的一個(gè)動(dòng)點(diǎn),△ADE與△AD′E關(guān)于直線AE對(duì)稱,當(dāng)△AD′B為直角三角形時(shí),DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.3a+4b=7ab B.(ab3)3=ab6 C.(a+2)2=a2+4 D.x12÷x6=x6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com