【題目】已知四邊形AOCD是放置在平面直角坐標系內(nèi)的梯形,其中O是坐標原點,點A,C,D的坐標分別為(0,8),(5,0),(3,8.若點P在梯形內(nèi),且△PAD的面積等于△POC的面積,△PAO的面積等于△PCD的面積. 求點P的坐標.

【答案】

【解析】

根據(jù)題意畫出圖形,過點PPEy軸于點E,利用PAD的面積等于POC的面積,得出EO的長,進而得出PE的長,即可得出P點坐標.

解:如圖,過點PPEy軸于點E

因為:點AC,D的坐標分別為(0,8),(5,0),(3,8),PAD的面積等于POC的面積,
所以:×3AE=×5OE,即38-OE=5OE,
解得:OE=3
所以:PAD的面積=POC的面積=×3×5=7.5,
PAO的面積=PCD的面積=[35×8÷2-2×7.5]÷2=8.5
×8PE=8.5,即PE=,
所以:點P的坐標是(3).
故答案為:(,3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算的結(jié)果中,是正數(shù)的是( )
A.(﹣2007)1
B.(﹣1)2007
C.(﹣1)×(﹣2007)
D.(﹣2007)÷2007

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(生活常識)

射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=2 .

(現(xiàn)象解釋)

如圖 2,有兩塊平面鏡 OM,ON,且 OMON,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD.求證 ABCD.

(嘗試探究)

如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB CD 相交于點 E,求∠BEC 的大小.

(深入思考)

如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB CD 所在的直線相交于點 E,∠BED=β , α β 之間滿足的等量關(guān)系是 .(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了進一步緩解交通擁堵問題,決定修建一條長為7千米的公路.如果平均每天的修建費y(萬元)與修建天數(shù)x(天)在30≤x≤12 0之間時具有一次函數(shù)的關(guān)系,如下表所示.

x

50

60

90

120

y

40

38

32

26


(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來在修建的過程中計劃發(fā)生改變,政府決定多修3千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計劃晚了15天,求原計劃每天的修建費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于點A(﹣1,0)、B(4,0),與y軸交于點C.

(1)a=;b=;
(2)點P為該函數(shù)在第一象限內(nèi)的圖象上的一點,過點P作PQ⊥BC于點Q,連接PC.
①求線段PQ的最大值;
②若以P、C、Q為頂點的三角形與△ABC相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了防溺水、交通安全、禁毒知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.求足球和籃球的單價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F兩點在BC邊上,DE、DF兩邊分別與AB邊交于點G、H.固定△ABC不動,△DEF從點F與點B重合的位置出發(fā),沿BC邊以每秒1個單位的速度向點C運動;同時點P從點F出發(fā),在折線FD﹣DE上以每秒2個單位的速度向點E運動.當點E到達點C時,△DEF和點P同時停止運動.設(shè)運動時間為t(秒).

(1)當t=2時,PH=cm,DG=cm;
(2)當t為何值時,△PDG為等腰三角形?請說明理由;
(3)當t為何值時,點P與點G重合?寫出計算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,連結(jié)CC′,使CC′∥AB.若∠CAB=65°,則旋轉(zhuǎn)的角度為( )

A.65°
B.50°
C.40°
D.35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若AB∥CD,EFAB CD分別相交于E、F,EP⊥EF∠EFD的平分線與EP相交于點P,且∠BEP=40°,求∠EFP的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案