【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F兩點在BC邊上,DE、DF兩邊分別與AB邊交于點G、H.固定△ABC不動,△DEF從點F與點B重合的位置出發(fā),沿BC邊以每秒1個單位的速度向點C運動;同時點P從點F出發(fā),在折線FD﹣DE上以每秒2個單位的速度向點E運動.當(dāng)點E到達點C時,△DEF和點P同時停止運動.設(shè)運動時間為t(秒).

(1)當(dāng)t=2時,PH=cm,DG=cm;
(2)當(dāng)t為何值時,△PDG為等腰三角形?請說明理由;
(3)當(dāng)t為何值時,點P與點G重合?寫出計算過程.

【答案】
(1),
(2)解:∵△BEG∽△BAC,

= ,即 = ,

解得,EG= t+

∴DG=10﹣EG= t,

當(dāng)DG=DP時,

△PDE才能成為等腰三角形,且PD=PE,

∵BF=t,PF=2t,DF=8,

∴PD=DF﹣PF=8﹣2t.

在Rt△PEF中,PE2=PF2+EF2=4t2+36=PD2.即4t2+36=(8﹣2t)2

解得t=

∴t為 時,△PDE為等腰三角形


(3)解:設(shè)當(dāng)△DEF和點P運動的時間是t時,點P與點G重合,

此時點P一定在DE邊上,DP=DG.

由已知可得tanB= = = ,tanD= ,

∴∠B=∠D,

又∵∠D+∠DEB=90°,

∴∠B+∠DEB=90°,

∴∠DGH=∠BFH=90°.

∴FH=BFtanB= t,DH=DF﹣FH=8﹣ t,DG=DHcosD=(8﹣ t) =﹣ t+ ,

∵DP+DF=2t,

∴DP=2t﹣8.

由DP=DG得,2t﹣8=﹣ t+ ,解得t= ,

∵4< <6,則此時點P在DE邊上.

∴t的值為 時,點P與點G重合


【解析】解:(1)當(dāng)t=2時,BF=2,PF=4,

∵∠DFE=90°,∠C=90°,

∴△BHF∽△BAC,

= ,即 =

解得,F(xiàn)H= ,

∴PH=PF﹣FH= ,

∵tanB= = = ,tanD= ,

∴∠B=∠D,

∴∠BGE=90°,

∴△BEG∽△BAC,

= ,即 = ,

解得,EG= ,

∴DG=10﹣EG= ,

所以答案是: ;

【考點精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識,掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方,以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是邊長3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當(dāng)點P到達點B時,P、Q兩點停止運動.設(shè)點P的運動時間為t(s),解答問題:當(dāng)t為何值時,△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的三個頂點分別是A(﹣3,2),B0,4),C0,2).

1)將ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的A1B1C1,平移ABC,若點A的對應(yīng)點A2的坐標為(0,﹣4),畫出平移后對應(yīng)的A2B2C2;

2)若將A1B1C1繞某一點旋轉(zhuǎn)可以得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形AOCD是放置在平面直角坐標系內(nèi)的梯形,其中O是坐標原點,點A,CD的坐標分別為(0,8),(5,0),(3,8.若點P在梯形內(nèi),且△PAD的面積等于△POC的面積,△PAO的面積等于△PCD的面積. 求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,是等邊三角形上一動點(點)與點不重合,連接,以為邊在上方作等邊三角形,連接,你能發(fā)現(xiàn)之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.

2)如圖二,當(dāng)動點在等邊三角形上運動時(點與點不重合),連接,以為邊在其上方、下方分別作等邊三角形和等邊三角形,連接,,探究有何數(shù)量關(guān)系?并證明你探究的結(jié)論.

3)如圖三,當(dāng)動點在等邊三角形的延長線上運動時,其他作法與圖2相同,若,請直接寫出    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)數(shù)學(xué)課題學(xué)習(xí)小組在“測量物體高度”的活動中,欲測量一棵古樹DE的高度,他們在這棵古樹的正前方一平房頂A點處測得古樹頂端D的仰角為30°,在這棵古樹的正前方C處,測得古樹頂端D的仰角為60°,在A點處測得C點的俯角為30°.已知BC為4米,且B、C、E三點在同一條直線上.

(1)求平房AB的高度;
(2)請求出古樹DE的高度(根據(jù)以上條件求解時測角器的高度忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是腰長為1的等腰三角形,以的斜邊為直角邊,畫第二個等腰三角形,再以的斜邊為直角邊,畫第三個等腰三角形,…,以此類推,則第2019個等腰三角形的斜邊長是___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊答案