【題目】如圖,小明(視為小黑點)站在一個高為10米的高臺A上,利用旗桿OM頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B.那么小明在蕩繩索的過程中離地面的最低點的高度MN是( )
A.2米B.2.2米C.2.5米D.2.7米
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,D,C,F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:△DEF≌△ABC.
(2)若∠A=52°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與直線y=x+3交x軸負半軸于點A,交y軸于點C,交x軸正半軸于點B.
(1)求拋物線的解析式;
(2)點P為拋物線上任意一點,設點P的橫坐標為x.
①若點P在第二象限,過點P作PN⊥x軸于N,交直線AC于點M,求線段PM關于x的函數(shù)解析式,并求出PM的最大值;
②若點P是拋物線上任意一點,連接CP,以CP為邊作正方形CPEF,當點E落在拋物線的對稱軸上時,請直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用6000元購進A、B兩種新式服裝.按照標價出售后獲利3800(毛利潤=售價-進價),這兩種服裝的進價、售價如表所示:
類型 價格 | A型 | B型 |
進價(元/件) | 60 | 100 |
售價(元/件) | 100 | 160 |
(1)求這兩種服裝各購進的件數(shù):
(2)如果A種服裝售價不變,B種服裝降價a元出售.這批服裝全部售完后所獲利潤為w.
①寫出w與a之間的函數(shù)關系式:
②當20≤a≤50時,這批服裝全部售出后,獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,在四邊形中,,點是的中點,若是的平分線,試判斷,,之間的等量關系.
解決此問題可以用如下方法:延長交的延長線于點,易證得到,從而把,,轉化在一個三角形中即可判斷.
,,之間的等量關系________;
(2)問題探究:如圖②,在四邊形中,,與的延長線交于點,點是的中點,若是的平分線,試探究,,之間的等量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過E作EF∥AC交BA的延長線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一點,CD=3,點P從B點出發(fā)沿射線BC方向以每秒2個單位的速度向右運動.設點P的運動時間為t.連結AP.
(1)當t=3秒時,求AP的長度(結果保留根號);
(2)當△ABP為等腰三角形時,求t的值;
(3)過點D做DE⊥AP于點E.在點P的運動過程中,當t為何值時,能使DE=CD?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,弦CD平分∠ACB,點E為弧AD上一點,連接CE、DE,CD與AB交于點N.
(1)如圖1,求證:∠AND=∠CED;
(2)如圖2,AB為⊙O直徑,連接BE、BD,BE與CD交于點F,若2∠BDC=90°﹣∠DBE,求證:CD=CE;
(3)如圖3,在(2)的條件下,連接OF,若BE=BD+4,BC=,求線段OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊 且BE=CF,AD+EC=AB.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com