【題目】如圖在四邊形ABCD中,∠B=∠D=90°,AE、CF分別平分∠BAD和∠BCD.試問直線AE、CF的位置關系如何?請說明你的理由.

【答案】解:AE∥CF. 理由如下:∵∠B=∠D=90°,
∴∠BAD+∠BCD=360°﹣90°×2=180°,
∵AE、CF分別平分∠BAD和∠BCD,
∴∠1= ∠BAD,∠2= ∠BCD,
∴∠1+∠2= (∠BAD+∠BCD)= ×180°=90°,
∵∠B=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
∴AE∥CF.

【解析】根據(jù)四邊形的內(nèi)角和等于360°求出∠BAD+∠BCD=180°,再根據(jù)角平分線的定義求出∠1+∠2=90°,根據(jù)直角三角形兩銳角互余求出∠2+∠3=90°從而得到∠1=∠3,然后根據(jù)同位角相等,兩直線平行證明即可.
【考點精析】通過靈活運用平行線的判定,掌握同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個等腰三角形的兩邊長分別為4,8,則它的周長為( 。
A.12
B.16
C.20
D.16或20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程 2x 2 - x + 1 = 0的根的情況是( 。

A. 有一個實數(shù)根B. 有兩個不相等的實數(shù)根

C. 沒有實數(shù)根D. 有兩個相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年,我國網(wǎng)絡購物市場交易規(guī)模達61000億元,較2016年增長29.6%61000億用科學記數(shù)法表示為( )

A. 6.1×1012B. 6.1×1011C. 6.1×108D. 6.1×104

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是(  )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(x1y1),點Q的坐標為(x2y2),且x1x2y1y2,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點PQ的“相關矩形”,如圖為點P,Q的“相關矩形”示意圖.

(1)已知點A的坐標為(1,0),

①若點B的坐標為(3,1),求點A,B的“相關矩形”的面積;

②點C在直線x=3上,若點A,C的“相關矩形”為正方形,求直線AC的表達式;

(2)正方形RSKT頂點R的坐標為(-1,1),K的坐標為(2,-2),點M的坐標為(m,3),若在正方形RSKT邊上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知﹣5x2m﹣1yn與11xn+2y﹣4﹣3m的積與x7y是同類項,試求出2n﹣m﹣9的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個賓館有二人間、三人間、四人間三種客房供游客租住,某旅行團25人準備同時租用這三種客房共9間,如果每個房間都住滿,則租房方案共有( 。
A.4種
B.3種
C.2種
D.1種

查看答案和解析>>

同步練習冊答案