【題目】如圖,正方形ABCD的邊長(zhǎng)為8,在各邊上順次截取AE=BF=CG=DH=5,則四邊形EFGH的面積是( 。
A. 30 B. 34 C. 36 D. 40
【答案】B
【解析】在Rt△AEH中,由勾股定理求出EH=,根據(jù)正方形面積公式求出即可
解: ∵四邊形ABCD是正方形, AE=BF=CG=DH, ∴AH=DG=CF=BE,
∴△AEH≌△DHG≌△CGF≌△BFE(SAS),
∴EH=EF=FG=HG,∵∠A=∠D=90°,
∴∠DGH+∠DHG=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=180°-90°=90°,
∴四邊形EFGH是正方形,
在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,
∵四邊形EFGH是正方形,
∴EF=FG=GH=EH=,
∴四邊形EFGH的面積是()2=34.
故選B.
“點(diǎn)睛”本題考查了正方形性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,正方形判定的應(yīng)用,關(guān)鍵是推出四邊形EFGH是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時(shí),對(duì)于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開(kāi)始出現(xiàn)錯(cuò)誤;事實(shí)上,當(dāng)b2﹣4ac>0時(shí),方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班學(xué)生參加公民道德知識(shí)競(jìng)賽,將競(jìng)賽所取得的成績(jī)(得分取整數(shù))進(jìn)行整理后分成5組,并繪制成頻率分布直方圖,如下圖所示,請(qǐng)結(jié)合直方圖提供的信息,回答下列問(wèn)題.
(1)該班共有多少名學(xué)生?
(2)60.5~70.5這一分?jǐn)?shù)段的頻數(shù)、頻率分別是多少?
(3)根據(jù)統(tǒng)計(jì)圖,提出一個(gè)問(wèn)題,并回答你所提出的問(wèn)題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我國(guó)古算書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入長(zhǎng)方形內(nèi)得到的,∠BAC=90°,AB=6,AC=8,點(diǎn)D,E,F(xiàn),G,H,I都在長(zhǎng)方形KLMJ的邊上,則長(zhǎng)方形KLMJ的面積為(
A. 360 B. 400 C. 440 D. 484
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使⊙O經(jīng)過(guò)A、C兩點(diǎn),且圓心落在AB邊上;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.)
(2)求證:BC是(1)中所作⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司有A,B型兩種客車(chē),它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車(chē)共5輛,同時(shí)送七年級(jí)師生到基地參加社會(huì)實(shí)踐活動(dòng),設(shè)租用A型客車(chē)x輛,根據(jù)要求回答下列問(wèn)題:
(1)用含x的式子填寫(xiě)下表:
車(chē)輛數(shù)(輛) | 載客量(人) | 租金(元) | |
A | x | 45x | 400x |
B | 5-x |
(2)若要保證租車(chē)費(fèi)用不超過(guò)1900元,求x的最大值;
(3)在(2)的條件下,若七年級(jí)師生共有195人,寫(xiě)出所有可能的租車(chē)方案,并確定最省錢(qián)的租車(chē)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)m是何值時(shí),關(guān)于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2
(1)是一元二次方程;
(2)是一元一次方程;
(3)若x=﹣2是它的一個(gè)根,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),△ACD和△BCE都是等邊三角形,連結(jié)AE,BD,設(shè)AE交CD于點(diǎn)F.
(1)求證:△ACE≌△DCB;
(2)求證:△ADF∽△BAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com