【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖,轉(zhuǎn)盤(pán)被平均分成份),并規(guī)定:顧客每購(gòu)物滿元,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)盤(pán),那么可直接獲得元的購(gòu)物券.
求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;
轉(zhuǎn)轉(zhuǎn)盤(pán)和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?
【答案】轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;選擇轉(zhuǎn)盤(pán)對(duì)顧客更合算.
【解析】
(1)找到紅色、黃色或綠色區(qū)域的份數(shù)之和占總份數(shù)的多少即為獲得購(gòu)物券的概率.
(2)應(yīng)計(jì)算出轉(zhuǎn)轉(zhuǎn)盤(pán)所獲得的購(gòu)物券與直接獲得10元的購(gòu)物券相比較便可解答.
整個(gè)圓周被分成了份,轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的有種情況,
所以轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;
根據(jù)題意得:轉(zhuǎn)轉(zhuǎn)盤(pán)所獲得的購(gòu)物券為:(元),
∵元元,
∴選擇轉(zhuǎn)盤(pán)對(duì)顧客更合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE與CD相交于點(diǎn)A,CF為∠BCD的平分線,EF為∠BED的平分線,EF與CD交于點(diǎn)M,CF與BE交于點(diǎn)N.
(1)若∠D=70°,∠BED=30°,則∠EMA= (度);
(2)若∠B=60°,∠BCD=40°,則∠ENC= (度);
(3)∠F與∠B、∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E, 交 AD 于 F,FG∥BC,FH∥AC,下列結(jié)論:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正確的結(jié)論有()
A.①②③B.①③④C.①②③④D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(0,3),按要求回答下列問(wèn)題:
(1)在圖中建立正確的平面直角坐標(biāo)系;
(2)根據(jù)所建立的坐標(biāo)系,寫(xiě)出點(diǎn)B和點(diǎn)C的坐標(biāo);
(3)作出△ABC關(guān)于x軸的對(duì)稱圖形△A′B′C′.(不用寫(xiě)作法)
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)去年種植了10畝地的南瓜,畝產(chǎn)量為2000kg,根據(jù)市場(chǎng)需要,今年該農(nóng)場(chǎng)擴(kuò)大了種植面積,并且全部種植了高產(chǎn)的新品種南瓜,設(shè)南瓜種植面積的增長(zhǎng)率為x.
(1)則今年南瓜的種植面積為 畝;(用含x的代數(shù)式表示)
(2)如果今年南瓜畝產(chǎn)量的增長(zhǎng)率是種植面積的增長(zhǎng)率的,今年南瓜的總產(chǎn)量為60000kg,求南瓜畝產(chǎn)量的增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)作與△ABC關(guān)于y軸成軸對(duì)稱的△A1B1C1;
(2)求△A1B1C1的面積;
(3)在x軸上找一點(diǎn)P,使PA1+PB1的值最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,美麗的弦圖,蘊(yùn)含著四個(gè)全等的直角三角形.已知每個(gè)直角三角形較長(zhǎng)的直角邊為a,較短的直角邊為b,斜邊長(zhǎng)為c.如圖②,現(xiàn)將這四個(gè)全圖②等的直角三角形緊密拼接,形成飛鏢狀,已知外圍輪廓(實(shí)線)的周長(zhǎng)為24,OC=3,則該飛鏢狀圖案的面積( 。
A. 6 B. 12 C. 24 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),,交軸于點(diǎn),點(diǎn),是二次函數(shù)圖象上關(guān)于拋物線對(duì)稱軸的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn),.
請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);
求二次函數(shù)的解析式;
根據(jù)圖象直接寫(xiě)出一次函數(shù)值大于二次函數(shù)值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A、E、F、C在一條直線上,AE=CF,過(guò)點(diǎn)E、F分別作DE⊥AC,BF⊥AC,且AB=CD.連接BD,交AC于點(diǎn)O.
(1)如圖1,求證:BF=DE.
(2)將△DEC沿AC方向平移到如圖2的位置,其余條件不變,若BF=3cm,請(qǐng)直接寫(xiě)出DE的長(zhǎng)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com