【題目】如圖,⊙O是正ABC的外接圓,點(diǎn)D為圓上一點(diǎn),連接AD,分別過點(diǎn)B和點(diǎn)CAD延長線的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接BDCD,已知EB=3,FC=2,現(xiàn)在有如下4個(gè)結(jié)論:①∠CDF=60°;②EDB∽△FDC;③BC=;④,其中正確的結(jié)論有(  )個(gè)

A. 1

B. 2

C. 3

D. 4

【答案】B

【解析】

根據(jù)等邊三角形的性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識(shí)一一判斷即可.

解:∵△ABC是等邊三角形

∴∠ABC=ACB=BAC=60°,

AB、C、D四點(diǎn)共圓,

∴∠CDF=ABC=60°,故①正確.

∵∠BDE=ACB=60°

∴∠BDE=CDF=60°,

BEAD,CFAD,

∴∠E=F=90°,

∴△EDB∽△FDC,故②正確.

BE=DE=3,CF=DF=2,

DE=,DF=

EF=DE+DF= 過點(diǎn)CCGBE于點(diǎn)G

∴四邊形EGCF是矩形,

EG=FC=2CG=EF=,

BG=BE-EG=1

RtBGC中,由勾股定理可得:BC=,故③錯(cuò)誤.

RtAEB中,由勾股定理可得:AE=,

AD=DE-AE=

ADDE=23

SADB=SEDB,故④錯(cuò)誤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)坐標(biāo)為(2,﹣1)的拋物線yax2+bx+ca0)與y軸交于點(diǎn)C0,3),與x軸交于A、B兩點(diǎn).

1)求拋物線的表達(dá)式;

2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接ACAD,求△ACD的面積;

3)點(diǎn)E為直線BC上一動(dòng)點(diǎn),過點(diǎn)Ey軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、EF為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,矩形AOBC的頂點(diǎn)C的坐標(biāo)是(64),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿線段AC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿線段BO運(yùn)動(dòng),當(dāng)Q到達(dá)O點(diǎn)時(shí),P,Q同時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間是t秒(t0).

1)如圖1,當(dāng)時(shí)間t  秒時(shí),四邊形APQO是矩形;

2)如圖2,在P,Q運(yùn)動(dòng)過程中,當(dāng)PQ5時(shí),時(shí)間t等于  秒;

3)如圖3,當(dāng)P,Q運(yùn)動(dòng)到圖中位置時(shí),將矩形沿PQ折疊,點(diǎn)AO的對應(yīng)點(diǎn)分別是D,E,連接OP,OE,此時(shí)∠POE45°,連接PE,求直線OE的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某海盜船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,求出此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長,結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732,≈1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與矩形AOBC的邊AC、BC分別交于點(diǎn)EF,E34),且F8,)為拋物線的頂點(diǎn),將CEF沿著EF翻折,點(diǎn)C恰好落在邊OB上的點(diǎn)D處.

1)求該拋物線的解析式;

2)點(diǎn)P為線段ED上一動(dòng)點(diǎn),連接PF,當(dāng)PF平分∠EFD時(shí),求PD的長度;

3)四邊形AODE1個(gè)單位/秒的速度沿著x軸向右運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的四邊形AODEDEF重合部分的面積為S,請直接寫出St的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)綠水青山就是金山銀山的發(fā)展理念,某市政部門招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù)該工程隊(duì)有兩種型號的挖掘機(jī),已知3臺(tái)型和5臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土165立方米;4臺(tái)型和7臺(tái)型挖掘機(jī)同時(shí)施工一小時(shí)挖土225立方米每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為300,每臺(tái)型挖掘機(jī)一小時(shí)的施工費(fèi)用為180

(1)分別求每臺(tái), 型挖掘機(jī)一小時(shí)挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機(jī)共12臺(tái)同時(shí)施工4小時(shí),至少完成1080立方米的挖土量,且總費(fèi)用不超過12960問施工時(shí)有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?

2)商場計(jì)劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+ax+nb01≤n≤3,n為整數(shù)),其中a是從2、46三個(gè)數(shù)中任取的一個(gè)數(shù),b是從13、5三個(gè)數(shù)中任取的一個(gè)數(shù),定義方程有實(shí)數(shù)根為事件Ann1,23),當(dāng)An的概率最小時(shí),n的所有可能值為_____

查看答案和解析>>

同步練習(xí)冊答案