【題目】如圖,已知AD是△ABC的角平分線,AD的中垂線交AB于點F,交BC的延長線于點E.以下四個結(jié)論:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠FDE=90°;(4)∠B=∠CAE.恒成立的結(jié)論有( )
A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4)
【答案】C
【解析】
由中垂線的性質(zhì)知,DE=AE,由等邊對等角知,∠EAD=∠EDA,故可判斷(1)
由中垂線的性質(zhì)知,FD=FA∠FDA=∠FAD,由AD平分∠BAC∠FAD=∠DAC,∠FDA=∠DACDF∥AC,故可判斷(2)
由三角形的外角與內(nèi)角的關系知,∠EAD=∠DAC+∠CAE,∠EDA=∠B+∠BAD,而∠EAD=∠EDA,∠FAD=∠DAC,故有∠EAC=∠B.故可判斷(4)
(1)∵EF是AD的中垂線,
∴DE=AE.
∴∠EAD=∠EDA.故(1)正確
∵EF為中垂線,
∴FD=FA.
∴∠FDA=∠FAD.
∵AD平分∠BAC,
∴∠FAD=∠DAC,
所以∠FDA=∠DAC.
∴DF∥AC.故(2)正確
∵∠EAD=∠EDA,∠EAD=∠DAC+∠CAE,∠EDA=∠B+∠BAD,
∴∠DAC+∠CAE=∠B+∠BAD,
∵∠FAD=∠DAC,
∴∠EAC=∠B.故(4)正確
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖表示甲騎摩托車和乙駕駛汽車沿相同的路線行駛90千米,由A地到B地時,行駛的路程y(千米)與經(jīng)過的時間x(小時)之間的關系。請根據(jù)圖象填空:
(1)摩托車的速度為_____千米/小時;汽車的速度為_____千米/小時;
(2)汽車比摩托車早_____小時到達B地。
(3)在汽車出發(fā)后幾小時,汽車和摩托車相遇?說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點A在△ECD的斜邊DE上
(1)求證:AE2+AD2=2AC2;
(2)如圖2,若AE=2,AC=2,點F是AD的中點,直接寫出CF的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】烏魯木齊周邊多地盛產(chǎn)草莓,今年某水果銷售店在草莓銷售旺季,以15元/kg 的成本價進50kg有機草莓,銷售人員銷售發(fā)現(xiàn)草莓損壞率為25%;
(1)對于水果店來說完好的草莓實際成本價是多少元/kg?
(2)按照這個實際成本設計銷售單價,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象,設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖角如圖3,則下列結(jié)論:①abc>0;②a+b+c=2;③a>;④b<1.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:已知,如圖,BCE、AFE是直線,AB∥CD,∠1=∠2,∠3=∠4.求證:AD∥BE.
證明:∵∠4=∠AFD( ),
∵∠3=∠4(已知),
∴∠3=∠ ( ).
∵∠1=∠2(已知),
∴∠1+∠3=∠2+∠AFD( ).
∴∠D=∠ ( ).
∴∠B=∠ ( ).
∴∠________=∠ ( ).
∴AD∥BE( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為160元,200元的A、B兩種型號的電風扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入/元 | |
A種型號/臺 | B種型號/臺 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B兩種型號的電風扇的銷售單價是多少?
(2)若該超市準備用不多于5400元的金額再次采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com