【題目】問題背景
在綜合實(shí)踐課上,同學(xué)們以圖形的平移與旋轉(zhuǎn)為主題開展數(shù)學(xué)活動(dòng),如圖(1),先將一張等邊三角形紙片對折后剪開,得到兩個(gè)互相重合的△ABD和△EFD,點(diǎn)E與點(diǎn)A重合,點(diǎn)B與點(diǎn)F重合,然后將△EFD繞點(diǎn)D順時(shí)針旋轉(zhuǎn),使點(diǎn)F落在邊AB上,如圖(2),連接EC.
操作發(fā)現(xiàn)
(1)判斷四邊形BFEC的形狀,并說明理由;
實(shí)踐探究
(2)聰聰提出疑問:若等邊三角形的邊長為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個(gè)單位長度(規(guī)定沿射線BC方向?yàn)檎,得?/span>△,連接,,使得得到的四邊形為菱形,請你幫聰聰解決這個(gè)問題,若能,請求出a的值;若不能,請說明理由。
(3)老師提出問題:請參照聰聰?shù)乃悸,若等邊三角形的邊長為8,將圖(2)中的△EFD在平面內(nèi)進(jìn)行一次平移,得到△,畫出平移后構(gòu)造出的新圖形,標(biāo)明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的一個(gè)結(jié)論,不必證明.
【答案】(1)四邊形BFEC為平行四邊形,理由見解析;(2)能, 或;(3)作圖見解析,結(jié)論為:四邊形為矩形.
【解析】
(1)由等邊三角形的性質(zhì)及旋轉(zhuǎn)的性質(zhì)求得△BFD為等邊三角形,從而求得EF∥BC且EF=BC,利用一組對邊平行且相等的四邊形是平行四邊形進(jìn)行判斷;
(2)分三角形沿射線BC和射線CB方向平移兩種情況,結(jié)合菱形的性質(zhì)及勾股定理求得CG的長度,從而求解;
(3)在(1)問的基礎(chǔ)上,利用平移及等邊三角形的性質(zhì)構(gòu)造矩形作圖,從而求解.
(1)四邊形BFEC為平行四邊形.
理由如下:∵△ABC為等邊三角形
∴∠ABD=60°,AB=BC
由題意,知FD=BD
∴△BFD為等邊三角形
∴∠FDB=60°
∵∠EFD=60°
∴EF∥BC
∵EF=AB=BC
∴四邊形BEFC為平行四邊形.
(2)在Rt△ABD中,∠ABD=60°,BD=DC=4
∴AD=4
當(dāng)△DEF沿射線BC方向平移時(shí),過點(diǎn)作G垂直BC交BC的延長線于點(diǎn)G
∵∥BC,=30°
∴=30°
在Rt△中,=4
∴=2
∴=6
∵四邊形為菱形
∴=8
在Rt△中,由勾股定理得CG=
∴DG=DC+CG=4+2
∴=DG-=2-2
當(dāng)△EDF沿射線CB方向平移時(shí),同理可得=2+2,即a=-2-2
∴a=-2-2或2-2
(3)將圖(2)中的△EFD在平面內(nèi)沿CB方向平移2個(gè)單位長度,得到△
此時(shí)
∴四邊形為矩形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“弘揚(yáng)傳統(tǒng)文化”的號(hào)召,某學(xué)校倡導(dǎo)全校1200名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動(dòng),并在活動(dòng)之后舉辦經(jīng)典詩詞大賽.為了了解本次系列活動(dòng)的持續(xù)效果,學(xué)校團(tuán)委在活動(dòng)啟動(dòng)之初,隨機(jī)抽取部分學(xué)生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)査結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖
大賽結(jié)束后一個(gè)月,再次抽查這部分學(xué)生的周詩詞誦背數(shù)量,繪制成如下統(tǒng)計(jì)表:
誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調(diào)查的信息分析
(1)學(xué)校團(tuán)委一共抽取了多少名學(xué)生進(jìn)行調(diào)查
(2)大賽前誦背4首人數(shù)所在扇形的圓心角為 ,并補(bǔ)充完條形統(tǒng)計(jì)圖
(3)估計(jì)大賽后一個(gè)月該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.
(1)求證:△BDF≌△ADC;
(2)若BD=4,DC=3,求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究.
如圖,在平面直角坐標(biāo)系中,A(0,8),C(6,0),以O,A,C為頂點(diǎn)作矩形OABC,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AO以4個(gè)單位每秒的速度向O運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC以3個(gè)單位每秒的速度向C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)動(dòng)點(diǎn)P,Q中的任何一個(gè)點(diǎn)到達(dá)終點(diǎn)后,兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接PQ.
(情景導(dǎo)入)當(dāng)t=1時(shí),求出直線PQ的解析式.
(深入探究)①連接AC,若△POQ與△AOC相似,求出t的值.
②如圖,取PQ的中點(diǎn)M,以QM為半徑向右側(cè)作半圓M,直接寫出半圓M的面積的最小值,并直接寫出此時(shí)t的值.
(拓展延伸)如圖,過點(diǎn)A作半圓M的切線,交直線BC于點(diǎn)H,于半圓M切于點(diǎn)N.
①在P,Q的整個(gè)運(yùn)動(dòng)過程中,點(diǎn)H的運(yùn)動(dòng)路徑為 .
②若固定點(diǎn)H(6,2)不動(dòng),則在整個(gè)運(yùn)動(dòng)過程中,半圓M能否與梯形AOCH相切?若能,求出此時(shí)t的值;若不能,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了“割圓術(shù)”,認(rèn)為圓內(nèi)接正多邊形邊數(shù)無限增加時(shí),周長就越接近圓周長,由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長為L,圓的直徑為d,如圖所示,當(dāng)n=6時(shí),π≈==3,那么當(dāng)n=12時(shí),π≈≈________(結(jié)果精確到0.01,參考數(shù)據(jù):sin15°=cos75°≈0.259).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在矩形中,,分別是邊,上的點(diǎn),過點(diǎn)作的垂線交于點(diǎn),以為直徑作半圓.
(1)填空:點(diǎn)_____________(填“在”或“不在”)上;當(dāng)時(shí),的值是_____________;
(2)如圖1,在中,當(dāng)時(shí),求證:;
(3)如圖2,當(dāng)的頂點(diǎn)是邊的中點(diǎn)時(shí),請直接寫出三條線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MCN=45°,點(diǎn)B在射線CM上,點(diǎn)A是射線CN上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合).點(diǎn)B關(guān)于CN的對稱點(diǎn)為點(diǎn)D,連接AB、AD和CD,點(diǎn)F在直線BC上,且滿足AF⊥AD.小明在探究圖形運(yùn)動(dòng)的過程中發(fā)現(xiàn)AF=AB:始終成立.
如圖,當(dāng)0°<∠BAC<90°時(shí).
① 求證:AF=AB;
② 用等式表示線段與之間的數(shù)量關(guān)系,并證明;
當(dāng)90°<∠BAC<135°時(shí),直接用等式表示線段CF、CD與CA之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論正確的是
A.b2>4acB.ac>0C.a–b+c>0D.4a+2b+c<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com