【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線AB與ON的位置關(guān)系,并證明.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個分別標有數(shù)1,2,3,4的小球,它們的形狀、大小完全相同,小紅先從口袋里隨機摸出一個小球記下數(shù)為x,小穎在剩下的3個球中隨機摸出一個小球記下數(shù)為y,這樣確定了點P的坐標(x,y).
(1)小紅摸出標有數(shù)3的小球的概率是多少?.
(2)請你用列表法或畫樹狀圖法表示出由x,y確定的點P(x,y)所有可能的結(jié)果.
(3)求點P(x,y)在函數(shù)y=﹣x+5圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,點A在直線l上,以A為圓心,OA為半徑的圓與y軸的另一個交點為E.給出如下定義:若線段OE,⊙A和直線l上分別存在點B,點C和點D,使得四邊形ABCD是矩形(點A,B,C,D順時針排列),則稱矩形ABCD為直線l的“位置矩形”.
例如,圖中的矩形ABCD為直線l的“位置矩形”.
(1)若點A(-1,2),四邊形ABCD為直線x=-1的“位置矩形”,則點D的坐標為 ;
(2)若點A(1,2),求直線y=kx+1(k≠0)的“位置矩形”的面積;
(3)若點A(1,-3),直線l的“位置矩形”面積的最大值為 ,此時點D的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OADB的頂點A,B的坐標分別為A(﹣6,0),B(0,4).過點C(﹣6,1)的雙曲線y=(k≠0)與矩形OADB的邊BD交于點E.
(1)填空:OA= ,k= ,點E的坐標為 ;
(2)當1≤t≤6時,經(jīng)過點M(t﹣1,﹣t2+5t﹣)與點N(﹣t﹣3,﹣t2+3t﹣)的直線交y軸于點F,點P是過M,N兩點的拋物線y=﹣x2+bx+c的頂點.
①當點P在雙曲線y=上時,求證:直線MN與雙曲線y=沒有公共點;
②當拋物線y=﹣x2+bx+c與矩形OADB有且只有三個公共點,求t的值;
③當點F和點P隨著t的變化同時向上運動時,求t的取值范圍,并求在運動過程中直線MN在四邊形OAEB中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:
如圖1,中,,于點,且;如圖2,在圖1的基礎(chǔ)上,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,當其中一點到達終點時另外一點也隨之停止運動,設(shè)點運動的時間為秒.
(1)求的長;
(2)當的其中一邊與平行時(與不重合),求的值;
(3)點在線段上運動的過程中,是否存在以為腰的是等腰三角形?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若n是一個兩位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學(xué)趣味活動中,每位參加者需從由數(shù)字1,2,3,4,5,6構(gòu)成的所有的“兩位遞增數(shù)”中隨機抽取1個數(shù),且只能抽取一次.
(1)寫出所有個位數(shù)字是5的“兩位遞增數(shù)”;
(2)請用列表法或樹狀圖,求抽取的“兩位遞增數(shù)”的個位數(shù)字與十位數(shù)字之積能被10整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,P是直線AC上一點,AD⊥BP于D,以AD為邊作等邊△ADE(D,E在直線AC異側(cè)).
(1)如圖1,若點P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)
(2)如圖2,若點P在AC延長線上,DE交BC于F求證:BF=CF;
(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y=(x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A'PB'.過點A'作A'C∥y軸交雙曲線于點C.
(1)求k1與k2的值;
(2)求直線PC的表達式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com