【題目】如圖,在平面直角坐標系中,矩形OADB的頂點A,B的坐標分別為A(﹣6,0),B(0,4).過點C(﹣6,1)的雙曲線y=(k≠0)與矩形OADB的邊BD交于點E.
(1)填空:OA= ,k= ,點E的坐標為 ;
(2)當1≤t≤6時,經(jīng)過點M(t﹣1,﹣t2+5t﹣)與點N(﹣t﹣3,﹣t2+3t﹣)的直線交y軸于點F,點P是過M,N兩點的拋物線y=﹣x2+bx+c的頂點.
①當點P在雙曲線y=上時,求證:直線MN與雙曲線y=沒有公共點;
②當拋物線y=﹣x2+bx+c與矩形OADB有且只有三個公共點,求t的值;
③當點F和點P隨著t的變化同時向上運動時,求t的取值范圍,并求在運動過程中直線MN在四邊形OAEB中掃過的面積.
【答案】(1)6,﹣6,(﹣,4);(2)①證明見解析;②t=或t=;③.
【解析】(1)根據(jù)題意將相關數(shù)據(jù)代入.
(2)①用t表示直線MN解析式,及b,c,得到P點坐標帶入雙曲線y=解析式,證明關于t的方程無解即可;
②根據(jù)拋物線開口和對稱軸,分別討論拋物線過點B和在BD上時的情況;
③由②中部分結(jié)果,用t表示F、P點的縱坐標,求出t的取值范圍及直線MN在四邊形OAEB中所過的面積.
解:(1)∵A點坐標為(﹣6,0)
∴OA=6
∵過點C(﹣6,1)的雙曲線y=
∴k=﹣6
y=4時,x=
∴點E的坐標為(﹣,4)
故答案為:6,﹣6,(﹣,4)
(2)①設直線MN解析式為:y1=k1x+b1
由題意得:
解得,
∵拋物線y=﹣過點M、N,
∴,
解得
∴拋物線解析式為:y=﹣x2﹣x+5t﹣2
∴頂點P坐標為(﹣1,5t﹣)
∵P在雙曲線y=﹣上
∴(5t﹣)×(﹣1)=﹣6
∴t=
此時直線MN解析式為:
聯(lián)立
∴8x2+35x+49=0
∵△=352﹣4×8×48=1225﹣1536<0
∴直線MN與雙曲線y=﹣沒有公共點.
②當拋物線過點B,此時拋物線y=﹣x2+bx+c與矩形OADB有且只有三個公共點
∴4=5t﹣2,得t=
當拋物線在線段DB上,此時拋物線與矩形OADB有且只有三個公共點
∴,得t=
∴t=或t=
③∵點P的坐標為(﹣1,5t﹣)
∴yP=5t﹣
當1≤t≤6時,yP隨t的增大而增大
此時,點P在直線x=﹣1上向上運動
∵點F的坐標為(0,﹣)
∴yF=﹣
∴當1≤t≤4時,隨者yF隨t的增大而增大
此時,隨著t的增大,點F在y軸上向上運動
∴1≤t≤4
當t=1時,直線MN:y=x+3與x軸交于點G(﹣3,0),與y軸交于點H(0,3)
當t=4﹣時,直線MN過點A.
當1≤t≤4時,直線MN在四邊形AEBO中掃過的面積為
S=.
科目:初中數(shù)學 來源: 題型:
【題目】某廠前5個月生產(chǎn)的總產(chǎn)量y(件)與時間x(月)的關系如圖所示,則下列說法正確的是( )
A. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月產(chǎn)量逐月減少
B. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月產(chǎn)量與3月持平
C. 1﹣3月的月產(chǎn)量逐月增加,4、5兩月停產(chǎn)
D. 1﹣3月的月產(chǎn)量逐月持平,4、5兩月停產(chǎn)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校創(chuàng)建“環(huán)保示范學校”,為了解全校學生參加環(huán)保類杜團的意愿,在全校隨機抽取了50名學生進行問卷調(diào)查,問卷給出了五個社團供學生選擇(學生可根據(jù)自己的愛好選擇一個社團,也可以不選),對選擇了社團的學生的問卷情況進行了統(tǒng)計,如表:
社團名稱 | A.酵素制作社團 | B.回收材料小制作社團 | C.垃圾分類社團 | D.環(huán)保義工社團 | E.綠植養(yǎng)護社團 |
人數(shù) | 10 | 15 | 5 | 10 | 5 |
(1)填空:在統(tǒng)計表中,這5個數(shù)的中位數(shù)是 ;
(2)根據(jù)以上信息,補全扇形圖(圖1)和條形圖(圖2);
(3)該校有1400名學生,根據(jù)調(diào)查統(tǒng)計情況,請估計全校有多少學生愿意參加環(huán)保義工社團;
(4)若小詩和小雨兩名同學在酵素制作社團或綠植養(yǎng)護社團中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學同時選擇綠植養(yǎng)護社團的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】依次剪6張正方形紙片拼成如圖示意的圖形,圖形中正方形①的面積為1,正方形②的面積為.
(1)請用含的式子直接寫出正方形⑤的面積;
(2)若正方形⑥與正方形③的面積相等,求正方形④和正方形⑤的面積比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)尺規(guī)作圖:如圖,AB為⊙O的直徑,過點A作⊙O的切線m;
(2)在直線m上任取一點P(A點除外),連接PB交圓O與點C,請補全圖形,并證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=∶DE=4∶1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雙十一購物狂歡節(jié),天貓“某玩具旗艦店”對樂高積木系列玩具將推出買一送一活動,根據(jù)積木數(shù)量的不同,廠家會訂制不同型號的外包裝盒,所有外包裝盒均為雙層上蓋的長方體紙箱(上蓋紙板面積剛好等于底面面積的2倍,如圖1),長方體紙箱的長為厘米,寬為厘米,高為厘米.
(1)請用含有,,的代數(shù)式表示制作長方體紙箱需要________平方厘米紙板;
(2)如圖2為若干包裝好的同一型號玩具堆成幾何體的三視圖,則組成這個幾何體的玩具個數(shù)最少為多少個;
(3)由于旗艦店在雙十一期間推出買一送一的活動,現(xiàn)要將兩個同一型號的樂高積木包裝在同一個大長方體的外包裝盒內(nèi)(如圖1),已知單個樂高積木的長方體紙盒長和高相等,且寬小于長.如圖3所示,現(xiàn)有甲,乙兩種擺放方式,請分別計算甲,乙兩種擺放方式所需外包裝盒的紙板面積(包裝盒上蓋朝上),并比較哪一種方式所需紙板面積更少,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線交x軸于A、B兩點,交y軸于C點,A點坐標為(﹣1,0),OC=2,OB=3,點D為拋物線的頂點.
(1)求拋物線的解析式;
(2)P為坐標平面內(nèi)一點,以B、C、D、P為頂點的四邊形是平行四邊形,求P點坐標;
(3)若拋物線上有且僅有三個點M1、M2、M3使得△M1BC、△M2BC、△M3BC的面積均為定值S,求出定值S及M1、M2、M3這三個點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com